Auflistung nach Schlagwort "Keyword Extraction"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragA Comparative Analysis on Machine Learning Techniques for Research Metadata: the ARDUOUS Case Study(INFORMATIK 2024, 2024) Yadav, Dipendra; Tonkin, Emma; Stoev, Teodor; Yordanova, KristinaThe rapid increase in research publications necessitates effective methods for organizing and analyzing large volumes of textual data. This study evaluates various combinations of embedding models, dimensionality reduction techniques, and clustering algorithms applied to metadata from papers accepted at the ARDUOUS (Annotation of useR Data for UbiquitOUs Systems) workshop over a period of 7 years. The analysis encompasses different types of keywords, including All Keywords (a comprehensive set of all extracted keywords), Multi-word Keywords (phrases consisting of two or more words), Existing Keywords (keywords already present in the metadata), and Single-word Keywords (individual words). The study found that the highest silhouette scores were achieved with 3, 4, and 5 clusters across all keyword types. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) were identified as the most effective dimensionality reduction techniques, while DistilBERT embeddings consistently yielded high scores. Clustering algorithms such as k-means, k-medoids, and Gaussian Mixture Models (GMM) demonstrated robustness in forming well-defined clusters. These findings provide valuable insights into the main topics covered in the workshop papers and suggest optimal methodologies for analyzing research metadata, thereby enhancing the understanding of semantic relationships in textual data.
- TextdokumentExtraktion und Analyse von Schlüsselwörtern in einer Literaturrecherche zu Quantum Computing(INFORMATIK 2022, 2022) Copurkuyu,Mazlum; Barton,ThomasDurch die große Menge an wissenschaftlichen Publikationen, die meist als unstrukturierte Daten vorliegt, nehmen Komplexität und Arbeitsaufwand eines Literature-Review Prozesses stetig zu. Auch im Forschungsgebiet Quantum Computing hat sich die Anzahl wissenschaftlicher Veröffentlichungen in den letzten Jahren stark erhöht. Dieser Beitrag gibt einen Überblick, wie man Text-Mining-Methoden zur Informationsextraktion bei der Literaturrecherche zu Quantum Computing einsetzen kann. Das zentrale Forschungsziel besteht in der Anwendung von Text-Mining zur automatischen Extraktion und Visualisierung von Schlüsselwörtern auf Basis der Abstracts von wissenschaftlichen Publikationen. Dieser Ansatz verwendet zum einen die TF-IDF-Methode und auf der anderen Seite den Word2Vec-Algorithmus, um die automatische Erfassung sowie die Verarbeitung relevanter Literatur zu ermöglichen. Anschließend wird eine visuelle Darstellung der Ergebnisse wie z.B. dynamische Word-Clouds durchgeführt. Aus der Analyse werden Erkenntnisse für den Forschungsbereich Quantum Computing abgeleitet.