Auflistung nach Schlagwort "MOOCs"
1 - 4 von 4
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragDesign Review von offenen Online-Kursen zum Thema Künstliche Intelligenz(INFORMATIK 2023 - Designing Futures: Zukünfte gestalten, 2023) Egloffstein, Marc; Kögler, KristinaDer Beitrag berichtet die ersten Ergebnisse eines explorativen Design Reviews von offenen Online-Kursen zum Thema Künstliche Intelligenz (KI). In einem Rating-Verfahren wurden N=41 zufällig ausgewählte Kurse des KI-Campus auf 15 theoriebasiert entwickelte didaktische Gütekriterien hin überprüft. Die Ergebnisse zeigen, dass die untersuchten Kurse gut strukturierte und systematisch aufbereitete Lernangebote darstellen. Gleichzeitig deuten sich Unterstützungspotenziale durch KI-Technologien an. Für die Weiterentwicklung von digitalen Lernangeboten zum Thema KI erscheint die Kopplung der Perspektiven „KI als Lerninhalt“ und „KI als Lernwerkzeug“ Erfolg versprechend.
- KonferenzbeitragStudent Success Prediction and the Trade-Off between Big Data and Data Minimization(DeLFI 2018 - Die 16. E-Learning Fachtagung Informatik, 2018) Heuer, Hendrik; Breiter, AndreasThis paper explores student’s daily activity in a virtual learning environment in the anonymized Open University Learning Analytics Dataset (OULAD). We show that the daily activity of students can be used to predict their success, i.e. whether they pass or fail a course, with high accuracy. This is important since daily activity can be easily obtained and anonymized. To support this, we show that the binary information whether a student was active on a given day has similar predictive power as a combination of the exact number of clicks on the given day and sensitive private data like gender, disability, and highest educational level. We further show that the anonymized activity data can be used to group students. We identify different student types based on their daily binarized activity and outline how educators and system developers can utilize this to address different learning types. Our primary stakeholders are designers and developers of learning analytics systems as well as those who commission such systems. We discuss the privacy and design implications of our findings for data mining in educational contexts against the background of the principle of data minimization and the General Data Protection Regulation (GDPR) of the European Union.
- KonferenzbeitragA Survey on Knowledge Management in Universities in the QS Rankings: E-learning and MOOCs(Workshop Gemeinschaften in Neuen Medien (GeNeMe) 2016, 2016) Gentile, Teresa Anna Rita; Nito, Ernesto De; Vesperi, WalterMany public organizations are employing Information Technology “IT” in Knowledge Management “KM” (Silwattananusarn and Tuamsuk, 2012; Alavi and Leidner, 2001; Chatti et al., 2007). Within universities, the use of IT could be an enabler to create and facilitate the development of knowledge (Joia, 2000; Garcia, 2007; Tian et al., 2009; Sandelands, 1997); to improve knowledge sharing (Aurelie Bechina Arntzen et al., 2009; Alavi and Gallupe, 2003); to develop communities of practice (Adams and Freeman, 2000). In the educational organizations IT is also a tool to improve the quality of learning (EC, 2000). E-learning is based on digital technologies (Aspen Institute Italy, 2014), through multiple teaching methods (Derouin et al., 2005), as tools for KM (Wild et al., 2002). The websites of some universities allows anyone to follow free lessons, through the internet. These types of free online courses are known as Massive Open Online Courses „MOOCs“ (EC, 2014; Sinclair et al., 2015). The purpose of this study is to verify the type of teaching adopted by European universities and understand how training through e-learning can improve the processes of transmission and sharing of knowledge allowing everyone, not only to students, to take lessons through the web. Design/methodology/approach – The analysis allows detecting data on universities by region through the study of the websites of the top 100 European universities present in a ranking called Quacquarelli Symonds, “QS World University Rankings 2015/16”. The method used to collect the data was marked by the creation of a specific database in which are inserted, for each university, different information: status (public/private), size, age, number of enrolled students, references on websites. In this Excel spreadsheet was also taken into account the type of educational offer provided by each university, with particular reference to the provision of online courses and courses open to all. Originality/value – The article aims to provide a detailed study on the use of technology in the educational context. The exploration allows you to design, within other universities unranked, styles of teaching online to share knowledge. Practical implications – The survey, currently, is the first step of a larger project which aims to analyse the different types of e-learning platforms used by 100 universities in the European rankings QS to make teaching online. From the results of this first phase, it has emerged that all the surveyed European universities provide training not only through classroom lessons, but also with a variety of courses through e-learning even for free through MOOCs.
- WorkshopbeitragSystemweite Datenanalyse für Learning Analytics und datengetriebene Entscheidungen in Lernumgebungen(Proceedings of DELFI Workshops 2019, 2019) Renz, Jan; Klenk, Max; Meinel, ChristophWir betreiben Learning Analytics, um alle Akteure und Stakeholder im E-Learning Umfeld mit den für sie relevanten Daten zu versorgen. Im Kontext von verteilten Systemen wie mit Microservices gebauten Lernarchitekturen liegen die Anwendungsdaten oft dezentral in Silos, sodass diese für die Analyse erst zusammengebracht werden müssen. Der direkte Zugriff auf die Quell-Daten ist oft nicht möglich. Diese Arbeit untersucht die technischen Möglichkeiten, relevante Daten aus verteilten Lernanwendungen über einen zentralen Zugang zugreif- und auswertbar zu machen.