Auflistung nach Schlagwort "Neuronales Netzwerk"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- TextdokumentAdaptives luftqualitätsgewichtetes Fahrradrouting mittels Land-use Regression auf Basis offener Daten(INFORMATIK 2021, 2021) Janßen, Julian; Tremper, Paul; Riedel, TillLuftschadstoffen ausgesetzt zu sein hat langfristige negative gesundheitliche Folgen, denen besonders Fahrradfahrer im urbanen Raum ausgesetzt sind. Dabei gibt es wahrscheinlich keine unschädliche Dosis: weniger ist immer besser. Diese Arbeit zeigt, dass luftqualitätsgewichtete Fahrradrouten die persönliche Exposition gemäß dem Regressionsmodell deutlich reduzieren können, wobei die errechneten Umwege zumeist nur minimal sind. Auf Basis offener Daten wird ein neuronales Netzwerk zur Schätzung der Luftqualität trainiert. Dabei werden PM10-Daten aus mobilen Messungen als Indikator der Luftqualität verwendet. Das entstehende Land-Use-Regression-Modell bezieht dabei sowohl zeitliche als auch räumliche Features mit ein. Anschließend wird dieses Modell verwendet, um luftqualitätsgewichtete Routen zu berechnen. Dabei wird gezeigt, wie ein solches feingranulare Modell im Routing verwendet werden kann. Anhand von zufällig gewählten Start/Ziel Paaren werden die luftqualitätsgewichteten Routen mit der jeweils kürzesten Strecke verglichen.
- ZeitschriftenartikelDer Einsatz von künstlicher Intelligenz zur Verbesserung des Incident Managements(HMD Praxis der Wirtschaftsinformatik: Vol. 56, No. 2, 2019) Frick, Nicholas; Brünker, Felix; Ross, Björn; Stieglitz, StefanIm Kontext des IT-Service-Managements stellt ein wesentlicher Faktor zur möglichst effizienten und effektiven Entstörung gemeldeter Probleme das Incident Management dar. Aufgenommene Störungen werden dabei identifiziert, protokolliert und kategorisiert, so dass nachgelagerte Strukturen, wie Second- und Third-Level-Support, Beeinträchtigungen unmittelbar beheben können. In dem vorliegenden Beitrag wird ein Proof of Concept vorgestellt, der den Einsatz künstlicher Intelligenz auf das Incident Management in Unternehmen untersucht. Speziell wird hierbei dargelegt, wie ein entsprechendes System zum Einsatz kommt, um die Kategorisierung einer Störung in einem Praxisunternehmen zu beschleunigen. Als Datengrundlage hierfür dienen historische Tickets, die im Rahmen des Incident Managements erfasst worden sind. Ziel ist es, automatisiert die betroffene Applikation bzw. zuständige Gruppe zu ermitteln. Das Resultat dieser Machbarkeitsstudie ist ein neuronales Netzwerk, mit dem eine übergreifende Wahrscheinlichkeit von 94 % korrekt zugeordneter Kategorien erreicht wird. Auf Basis der vorliegenden Ergebnisse werden Herausforderungen während der Umsetzung dargestellt. Potentielle Einsatzgebiete und denkbare Weiterentwicklungen, speziell in Bezug auf die Kollaboration zwischen MitarbeiterInnen des Services Desks und künstlicher Intelligenz, werden abgeleitet und diskutiert. Zudem wird präsentiert, warum der Einsatz von künstlicher Intelligenz, sowohl im IT-Service-Management, als auch in anderen unternehmensrelevanten Vorgängen, sinnvoll erscheint. In the context of IT service management, incident management is one of the major factors in resolving reported problems efficiently and effectively. Recorded incidents are identified, logged, and categorised. Thus, the subsequent second and third level support can immediately resolve incoming incidents. This article introduces a proof of concept examining the usage of artificial intelligence in the context of incident management. Specifically, the usage of such a system to speed up the categorisation of upcoming incidents within a company is described. The dataset used consists of historical tickets that were collected in incident management. The goal is to automatically identify the responsible unit. The result of this feasibility study is a neural network which assigns the corresponding categories with an overall precision and recall of 94%. Based on the findings of this study, the challenges of the practical implementation are presented. In the context of collaboration between service desk employees and artificial intelligence, potential fields of application and further possibilities of development are discussed. Moreover, the usage of artificial intelligence in IT service management as well as in other company-related processes is discussed.