Auflistung nach Schlagwort "Online courses"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragEducational Text Summarizer: Which sentences are worth asking for?(DELFI 2020 – Die 18. Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V., 2020) Rüdian, Sylvio; Heuts, Alexander; Pinkwart, NielsMany question generation approaches focus on the generation process itself, but they work with single sentences as input only. Although the state of the art of question generation’s results is quite good, it cannot be used practically as the selection which sentences are worth asking for in an educational setting is currently not possible in an automated way. This limits the ability to generate interactive course materials at scale. In this paper, we conduct a study where we compare teachers’ sentence selections of texts with 9 algorithms to find the most appropriate ones concerning reading comprehension. 30 teachers compared the “winner” algorithm, Edmundson with LexRank, which was found to be the optimal algorithm according to previous literature. The result shows that Edmundson outperforms LexRank.
- ZeitschriftenartikelKostenfreie Onlinekurse nachhaltig mit personalisiertem Marketing finanzieren – Ein Vorschlag zur synergetischen Kombination zweier datengetriebener Geschäftsmodelle(HMD Praxis der Wirtschaftsinformatik: Vol. 58, No. 3, 2021) Rüdian, Sylvio; Vladova, GerganaSelbstbestimmtes Lernen mit Onlinekursen findet zunehmend mehr Akzeptanz in unserer Gesellschaft. Lernende können mithilfe von Onlinekursen selbst festlegen, was sie wann lernen und Kurse können durch vielfältige Adaptionen an den Lernfortschritt der Nutzer angepasst und individualisiert werden. Auf der einen Seite ist eine große Zielgruppe für diese Lernangebote vorhanden. Auf der anderen Seite sind die Erstellung von Onlinekursen, ihre Bereitstellung, Wartung und Betreuung kostenintensiv, wodurch hochwertige Angebote häufig kostenpflichtig angeboten werden müssen, um als Anbieter zumindest kostenneutral agieren zu können. In diesem Beitrag erörtern und diskutieren wir ein offenes, nachhaltiges datengetriebenes zweiseitiges Geschäftsmodell zur Verwertung geprüfter Onlinekurse und deren kostenfreie Bereitstellung für jeden Lernenden. Kern des Geschäftsmodells ist die Nutzung der dabei entstehenden Verhaltensdaten, die daraus mögliche Ableitung von Persönlichkeitsmerkmalen und Interessen und deren Nutzung im kommerziellen Kontext. Dies ist eine bei der Websuche bereits weitläufig akzeptierte Methode, welche nun auf den Lernkontext übertragen wird. Welche Möglichkeiten, Herausforderungen, aber auch Barrieren überwunden werden müssen, damit das Geschäftsmodell nachhaltig und ethisch vertretbar funktioniert, werden zwei unabhängige, jedoch synergetisch verbundene Geschäftsmodelle vorgestellt und diskutiert. Zusätzlich wurde die Akzeptanz und Erwartung der Zielgruppe für das vorgestellte Geschäftsmodell untersucht, um notwendige Kernressourcen für die Praxis abzuleiten. Die Ergebnisse der Untersuchung zeigen, dass das Geschäftsmodell von den Nutzer*innen grundlegend akzeptiert wird. 10 % der Befragten würden es bevorzugen, mit virtuellen Assistenten – anstelle mit Tutor*innen zu lernen. Zudem ist der Großteil der Nutzer*innen sich nicht darüber bewusst, dass Persönlichkeitsmerkmale anhand des Nutzerverhaltens abgeleitet werden können. Self-determined learning is increasingly accepted in our society. Online courses offer scheduling flexibility and pacing options, so that the learners can complete their assignments at convenient times. Moreover, online courses can be adapted and individualized to match the learning progress of the users through various adaptations. There is a large target group that aims to develop certain skills with online courses. But their creation, implementation, maintenance, and support are cost-intensive, which means that high-quality tutored courses often have to be offered fee-based to operate at least cost-neutrally without gaining some profit. In this paper, we demonstrate and discuss an open, sustainable, data-driven two-sided business model for using verified online courses and making them available to every learner free of charge. The core of the business model is the use of behavioral data for deriving personality traits and interests, and their use in a commercial context. This method is already widely accepted in web search, which is now implemented in the learning context. The opportunities, challenges, but also barriers that need to be overcome for the business model to be applicable and ethical at the same time are discussed while two independent but synergistically connected business models are presented. Besides, we examined the acceptance and expectation of the target group for the presented business model to understand the necessary core assets for practice. The results of the study indicate that the business model is fundamentally accepted. 10% of the respondents prefer to learn with virtual assistants instead of tutors, and the majority of users is not aware that personality traits can be derived from user behavior.