Auflistung nach Schlagwort "Produktrezensionen"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelDas Rezept für die perfekte Rezension?(Wirtschaftsinformatik: Vol. 55, No. 3, 2013) Scholz, Michael; Dorner, VerenaInternethändler bieten ihren Kunden vermehrt die Möglichkeit, Online-Rezensionen zu erstellen. Diese reduzieren die Suchkosten anderer Kunden und erhöhen deren Verweildauer im E-Shop. Mittlerweile sind jedoch so viele Rezensionen verfügbar, dass das Auffinden von Produktinformationen und die Einschätzung der Produktqualität schwierig geworden sind. Abhilfe sollte die Bewertung der Nützlichkeit der Rezensionen durch Leser schaffen. Dieser Mechanismus hat jedoch zwei kritische Schwachstellen. Zum einen bleiben viele Rezensionen unbewertet, sodass sie bei einer Sortierung nach der Nützlichkeit herausfallen. Zum anderen gibt es keine Anhaltspunkte für Rezensenten, wie eine nützliche Rezension aussehen sollte. Zur Ableitung von Einflussfaktoren auf die Nützlichkeit von Produktrezensionen wird das Modell von Wang und Strong zur kontextabhängigen Beurteilung von Datenqualität adaptiert. Eine empirische Analyse von 27.104 Kundenrezensionen auf Amazon.com über sechs Produktkategorien zeigt, dass die Nützlichkeit einer Rezension nicht nur von ihren eigenen Attributen abhängt, sondern auch von kontextuellen Faktoren, die sich aus der Gesamtheit aller verfügbaren Rezensionen ergeben. Rezensionen für Erfahrungs- und Suchgüter unterscheiden sich systematisch voneinander. Das vorgeschlagene Modell erlaubt die Berechnung vorläufiger Nützlichkeitswerte für unbewertete Rezensionen und bildet die Basis für einen Kundenleitfaden zur Erstellung nützlicherer Rezensionen.AbstractOnline product reviews, originally intended to reduce consumers’ pre-purchase search and evaluation costs, have become so numerous that they are now themselves a source for information overload. To help consumers find high-quality reviews faster, review rankings based on consumers’ evaluations of their helpfulness were introduced. But many reviews are never evaluated and never ranked. Moreover, current helpfulness-based systems provide little or no advice to reviewers on how to write more helpful reviews. Average review quality and consumer search costs could be much improved if these issues were solved. This requires identifying the determinants of review helpfulness, which we carry out based on an adaption of Wang and Strong’s well-known data quality framework. Our empirical analysis shows that review helpfulness is influenced not only by single-review features but also by contextual factors expressing review value relative to all available reviews. Reviews for experiential goods differ systematically from reviews for utilitarian goods. Our findings, based on 27,104 reviews from Amazon.com across six product categories, form the basis for estimating preliminary helpfulness scores for unrated reviews and for developing interactive, personalized review writing support tools.
- ZeitschriftenartikelHybrider Ansatz zur automatisierten Themen-Klassifizierung von Produktrezensionen(HMD Praxis der Wirtschaftsinformatik: Vol. 56, No. 5, 2019) Goetz, Rene; Piazza, Alexander; Bodendorf, FreimutIm Online-Handel werden durch Interaktionen von Kunden mit den Web-Plattformen enorme Datenmengen generiert. So zählt Kundenfeedback in Form von Produktrezensionen zu den unstrukturierten Daten, für deren Verarbeitung Ansätze aus dem Gebiet der Computerlinguistik und des maschinellen Lernens benötigt werden. Als Alternative zu den klassischen Ansätzen des überwachten und unüberwachten Lernens, welche im betrieblichen Kontext und der Anwendungsdomäne der Produktrezensionen oftmals an deren Grenzen stoßen, wird in diesem Artikel ein hybrider Ansatz zur Kategorisierung von Produktrezensionen vorgestellt, der die Vorteile des maschinellen Lernens und der menschlichen Expertise vereint. Ziel dieses Artikels ist es, einen Ansatz zu präsentieren, welcher es ermöglicht, automatisiert und basierend auf den Anforderungen aus der Praxis, strukturiert Themen und darauf bezogene Aspekte aus Produktrezensionen zu extrahieren. Mithilfe von Word2Vec werden semantische Beziehung der in den Rezensionen enthaltenen Wörter trainiert. Dadurch können einzelne Wörter mit vorher definierten Themen auf deren Ähnlichkeit untersucht werden und in den Rezensionen identifiziert und extrahiert werden. Dieser Ansatz wird am Beispiel eines Datensatzes von rund fünf Millionen Produktrezensionen der Online-Plattform Amazon demonstriert und dessen Ergebnisse mit denen eines gängigen Topic Modelling Ansatzes gegenübergestellt. In e‑commerce, enormous amounts of data are generated through the interaction of customers with Web platforms. Customer feedback in the form of product reviews, for instance, is an example for unstructured data, which processing requires approaches from the fields of computer linguistics and machine learning. As an alternative to the classical approaches of supervised and unsupervised learning, which often reach their limits in the business context and the application domain of product reviews, this article presents a hybrid approach for categorizing product reviews that combines the advantages of machine learning and human expertise. The aim of this paper is to present an approach that allows to automatically extract structured topics and related aspects from product reviews based on practical requirements. Word2Vec is used to train semantic relationships between words that occur in product reviews. In this way, individual words of each review can be compared with in advance defined topic words regarding their similarity and can then be extracted from the reviews. This approach is demonstrated using around five million product reviews of the Amazon online platform. The results are getting compared with those from a common topic modelling technique.