Auflistung nach Schlagwort "Slow feature analysis"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- ZeitschriftenartikelAutonomous Learning of State Representations for Control: An Emerging Field Aims to Autonomously Learn State Representations for Reinforcement Learning Agents from Their Real-World Sensor Observations(KI - Künstliche Intelligenz: Vol. 29, No. 4, 2015) Böhmer, Wendelin; Springenberg, Jost Tobias; Boedecker, Joschka; Riedmiller, Martin; Obermayer, KlausThis article reviews an emerging field that aims for autonomous reinforcement learning (RL) directly on sensor-observations. Straightforward end-to-end RL has recently shown remarkable success, but relies on large amounts of samples. As this is not feasible in robotics, we review two approaches to learn intermediate state representations from previous experiences: deep auto-encoders and slow-feature analysis. We analyze theoretical properties of the representations and point to potential improvements.
- ZeitschriftenartikelSlow Feature Analysis: Perspectives for Technical Applications of a Versatile Learning Algorithm(KI - Künstliche Intelligenz: Vol. 26, No. 4, 2012) Escalante-B., Alberto N.; Wiskott, LaurenzSlow Feature Analysis (SFA) is an unsupervised learning algorithm based on the slowness principle and has originally been developed to learn invariances in a model of the primate visual system. Although developed for computational neuroscience, SFA has turned out to be a versatile algorithm also for technical applications since it can be used for feature extraction, dimensionality reduction, and invariance learning. With minor adaptations SFA can also be applied to supervised learning problems such as classification and regression. In this work, we review several illustrative examples of possible applications including the estimation of driving forces, nonlinear blind source separation, traffic sign recognition, and face processing.