Auflistung nach Schlagwort "Visualization"
1 - 10 von 29
Treffer pro Seite
Sortieroptionen
- TextdokumentAdapting Binary Decision Diagrams for Visualizing Product Configuration Data(INFORMATIK 2017, 2017) Bischoff, Daniel; Küchlin, WolfgangThis paper deals with the challenges of visualizing and understanding complex interacting Boolean formulæ for selecting parts in an automotive Bill-of-Materials (BoM). Our approach targets entire BoM positions containing all variants of a part, each with its own selection formula. A part variant is needed for a car if the selection formula evaluates to true under the option list (feature list) which defines the car variant. Understanding the formulæ is critical when editing or when trying to analyze and explain a bug, but it is non-trivial. SAT-solving is commonly used to detect bugs, but explaining the cause of bugs is a different matter. Our approach is to visualize all selection alternatives in a single diagram based on an adaptation of binary decision diagrams (BDDs). We also visualize the influence of the configuration constraints for car variants on the selection diagrams and show how they can help to reduce their size. Based on this method we implemented a visualization tool which additionally serves as a visual formula editor.
- ZeitschriftenartikelAdaptive Dissimilarity Measures, Dimension Reduction and Visualization (University of Groningen)(KI - Künstliche Intelligenz: Vol. 26, No. 4, 2012) Bunte, Kerstin
- ZeitschriftenartikelAugmented Reality und Virtual Reality – Einsatz im Kontext von Arbeit, Forschung und Lehre(HMD Praxis der Wirtschaftsinformatik: Vol. 59, No. 1, 2022) Knoll, Matthias; Stieglitz, StefanTechnologien zur Unterstützung von Augmented Reality (AR) und Virtual Reality (VR) setzen sich mit zunehmender Geschwindigkeit am Markt durch und ermöglichen so das seit vielen Jahren bekannte AR-/VR-Konzept in vielfältigen industriellen, dienstleistungsorientierten, hochschulischen und privaten Einsatzbereichen zu betriebswirtschaftlich sinnvollen Rahmenbedingungen anzuwenden. Insbesondere im Endkundenmarkt erschließen sich einschlägige Anwendungen einen stark wachsenden Markt. AR und VR werden über die bislang in diesem Bereich dominierende Spieleindustrie hinaus „alltagstauglich“. Für eine vertiefende Diskussion einzelner Einsatzbereiche und Herausforderungen ist es daher zunächst hilfreich, die Begrifflichkeiten voneinander abzugrenzen und die mit dem Einsatz verbundenen begleitenden Chancen und Risiken im konkreten Projektkontext adressieren zu können. Dieser Beitrag definiert daher zunächst die zentralen Begriffe und stellt anschließend grundlegende Anwendungsmöglichkeiten und wichtige Einsatzgebiete vor. Er unterstützt zudem bei der Betrachtung von Vor- und Nachteilen, insbesondere im Kontext der Suche nach passenden Lösungen und des Risikomanagements und schließt mit Hinweisen für den Einstieg in Technologie und Anwendung. Technologies to support augmented reality (AR) and virtual reality (VR) are establishing themselves on the market at an increasing rate, thus enabling the AR/VR concept, which has been known for many years, to be applied in a wide variety of industrial, service-oriented, academic and private areas of application under conditions that make sense from a business or personal perspective. Particularly in the end customer market, relevant applications are opening up a rapidly growing market beyond the gaming industry that has dominated this area to date—AR and VR are becoming more and more fit for everyday use. For an in-depth discussion of application areas and challenges, it is therefore helpful to be able to distinguish relevant terms from one another and to able to address opportunities and risks associated with the technologies’ use in specific project contexts. This article therefore first defines the key terms and concepts. Afterwards potential applications and important areas of use are discussed. This article also provides support in considering advantages and disadvantages, especially in the context of finding suitable solutions and a reasonable risk management. It concludes with tips for getting started with technology and application.
- KonferenzbeitragAugmenting Collaboration with Invisible Data: Brain-Computer Interface for Emotional Awareness(Mensch und Computer 2019 - Tagungsband, 2019) Makhkamova, Alina; Ziegler, Pascal; Werth, DirkEmotions are crucial to any kind of human interaction. Both, emotional state and its perception of own and others have a great impact on the cooperation outcomes. In this paper, we discuss the role of emotions in collaboration and present a concept of the prototype aimed at enriching collaborative remote groups with emotional awareness which can in turn potentially lead to increased intragroup trust and increased performance. The main difference of the presented system from similar ones is that it makes use of inobtrusive and robust emotions measurement and representation based on brain activity. We provide a short overview of related works and further directions.
- KonferenzbeitragBetter Safe than Sorry: Visualizing, Predicting, and Successfully Guiding Courses of Study(BTW 2023, 2023) Kerth, Alexander; Schuhknecht, Felix; Pensel, Lukas; Henneberg, JustusSuccessfully going through a course of study is a lengthy and challenging task. To obtain a degree, many obstacles must be overcome and the right decisions must be made at the right point in time, often overwhelming students. To reduce the amount of dropouts, the goal of study advisors is to reach out to endangered students in time and to provide them help and guidance. To support the work of study advisors, who typically have to monitor a large amount of students simultaneously, we present in this demonstration an easy-to-use graphical tool that (a) allows the advisor to visualize all relevant information of study data in a responsive graph in order to overview the current study situation. Additional to visualization, our tool provides (b) a forecasting functionality based on pre-trained models and (c) a warning feature to identify endangered students early on. In the on-site demonstration, the audience will be able to step into the role of a study advisor and use our tool and all of its features to identify and guide struggling students within anonymized real-world study data.
- TextdokumentBig graph analysis by visually created workflows(BTW 2019, 2019) Rostami, M. Ali; Peukert, Eric; Wilke, Moritz; Rahm, ErhardThe analysis of large graphs has received considerable attention recently but current solutions are typically hard to use. In this demonstration paper, we report on an effort to improve the usability of the open-source system Gradoop for processing and analyzing large graphs. This is achieved by integrating Gradoop into the popular open-source software KNIME to visually create graph analysis workflows, without the need for coding. We outline the integration approach and discuss what will be demonstrated.
- WorkshopbeitragCorpus2Wiki: A MediaWiki based Annotation & Visualisation Tool for the Digital Humanities(INF-DH-2018, 2018) Rutherford, Eleanor; Hemati, Wahed; Mehler, AlexanderIn this paper, we present WikiExporter, a tool which automatically creates a MediaWiki site for a given corpus of texts. The texts, along with automatically generated annotations and visualisations associated with them, are displayed on this MediaWiki site, locally hosted on the users’ own machine. Several different software components are used to this end - Docker for ease and consistency of deployment, MediaWiki for the core engine, TextImager Client for the generation of annotations and a number of existing, and as well as extended, MediaWiki extensions for the visualisations. This tool was specifically designed for use within the interdisciplinary field of the Digital Humanities, as it provides a visual analysis and representation of texts via a tool which require no programming or advanced computational knowledge and uses an interface already well-known within the Digital Humanities Community, namely MediaWiki.
- TextdokumentCubeViz.js: A Lightweight Framework for Discovering and Visualizing RDF Data Cubes(INFORMATIK 2017, 2017) Abicht, Konrad; Alkhouri, Georges; Arndt, Natanael; Meissner, Roy; Martin, MichaelIn this paper we present CubeViz.js, the successor of CubeViz, as an approach for lightweight visualization and exploration of statistical data using the RDF Data Cube vocabulary. In several use cases, such as the European Unions Open Data Portal, in which we deployed CubeViz, we were able to gather various requirements that eventually led to the decision of reimplementing CubeViz as JavaScript-only application. As part of this paper we showcase major functionalities of CubeViz.js and its improvements in comparison to the prior version.
- ZeitschriftenartikelDecision Analytics mit Heatmap-Visualisierung von mehrschrittigen Ensembledaten(Wirtschaftsinformatik: Vol. 56, No. 3, 2014) Köpp, Cornelius; Mettenheim, Hans-Jörg; Breitner, Michael H.Heutige in verschiedenen Informationssystemen integrierte Prognosetechniken nutzen oft Ensembles zur Darstellung verschiedener zukünftiger Szenarien. Die Aggregation dieser Prognosen stellt eine anspruchsvolle Aufgabe da: Bei der Nutzung von Mittelwert und Median (gängige Praxis) gehen wichtige Informationen verloren, vor allem wenn die zugrunde liegende Verteilung zu jedem Schritt multimodal ist. Um dies zu vermeiden präsentieren wir einen Heatmap-Visualisierungsansatz. Visuell ist eine einfache Unterscheidung zwischen Bereichen mit hoher Aktivität (hohe Wahrscheinlichkeit der Realisierung) und solchen mit niedriger Aktivität möglich. Diese Form der Darstellung ermöglicht eine Identifikation von sich aufspaltenden Pfaden im Prognoseensemble und schafft dadurch eine „dritte Alternative“ im Entscheidungsraum. Die meisten Prognosesysteme bieten nur Ergebnisse „auf“ oder „ab“ an. Die vorgestellte Heatmap-Visualisierung führt zusätzlich ein Ergebnis „weiß nicht“ ein. Durch Blick auf die Heatmap können somit Bereiche identifiziert werden, in denen sich das zugrunde liegende Prognosemodell nicht sicher ist über den zukünftigen Ausgang. Wir präsentieren einen Softwareprototyp zur Unterstützung von Entscheidern durch eine interaktive Visualisierung und diskutieren den Informationsgewinn durch die Nutzung. Der Prototyp wurde bereits anderen Forschern und Praktikern präsentiert und mit diesen diskutiert.AbstractToday’s forecasting techniques, which are integrated into several information systems, often use ensembles that represent different scenarios. Aggregating these forecasts is a challenging task: when using the mean or median (common practice), important information is lost, especially if the underlying distribution at every step is multimodal. To avoid this, the authors present a heatmap visualization approach. It is easy to visually distinguish regions of high activity (high probability of realization) from regions of low activity. This form of visualization allows to identify splitting paths in the forecast ensemble and adds a “third alternative” to the decision space. Most forecast systems only offer “up” or “down”: the presented heatmap visualization additionally introduces “don’t know”. Looking at the heatmap, regions can be identified in which the underlying forecast model cannot predict the outcome. The authors present a software prototype with interactive visualization to support decision makers and discuss the information gained by its use. The prototype has already been presented to and discussed with researchers and practitioners.
- KonferenzbeitragDemo zum E-Learning Software Projekt „Vuong-DCP für Datenkompressionsverfahren“(DeLFI 2018 - Die 16. E-Learning Fachtagung Informatik, 2018) Vuong, The Anh; Sang, Alexander; Wolf, Samuel; Thöne, Philipp; Asir, SametHinsichtlich der Lehre zur Datenkompression wurde ein Open Source Projekt “E-Learning Simulator Vuong-DCP” initialisiert. Das Projekt bietet eine Software-Plattform an, die Datenflüsse bei der Kompression zu visualisieren. Die Codecs (Coder-Decoder) können zum Experimentieren parametrisiert werden, oder aus verschiedenen Codierungsverfahren zusammengeschaltet werden. Die Informatikstudenten an der Professur für Graphische Datenverarbeitung (GDV), Informatik Institut der J.W. Goethe Universität, haben dieses Projekt mitentwickelt und aufgebaut. Die Ergebnisse der Entwicklung des Projekts werden vorgestellt und Lerneffekte können damit vermittelt werden.
- «
- 1 (current)
- 2
- 3
- »