Auflistung nach Schlagwort "data set"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- WorkshopbeitragHow can Small Data Sets be Clustered?(Mensch und Computer 2021 - Workshopband, 2021) Weigand, Anna Christina; Lange, Daniel; Rauschenberger, MariaIn many areas, only small data sets are available and big data does not play a significant role, e.g., in Human-Centered Design research. In the context of machine learning analysis, results of small data sets can be biased due to single variables or missing values. Nevertheless, reliable and interpretable results are essential for determining further actions, such as, e.g., treatments in a health-related use case. In this paper, we explore machine learning clustering algorithms on the basis of a small, health-related (variance) data set about early dyslexia screening. Therefore, we selected three different clustering algorithms from different clustering methods: K-Means, HAC and DBSCAN. In our case, K-Means and HAC showed promising results, while DBSCAN did not deliver distinct results. Based on our experiences, we provide first proposals on how to handle small data set clustering and describe situations in which using Human- Centered Design methods can increase interpretability of machine learning clustering results. Our work represents a starting point for discussing the topic of clustering small data sets.
- KonferenzbeitragKnuckleTouch: Enabling Knuckle Gestures on Capacitive Touchscreens using Deep Learning(Mensch und Computer 2019 - Tagungsband, 2019) Schweigert, Robin; Leusmann, Jan; Hagenmayer, Simon; Weiß, Maximilian; Le, Huy Viet; Mayer, Sven; Bulling, AndreasWhile mobile devices have become essential for social communication and have paved the way for work on the go, their interactive capabilities are still limited to simple touch input. A promising enhancement for touch interaction is knuckle input but recognizing knuckle gestures robustly and accurately remains challenging. We present a method to differentiate between 17 finger and knuckle gestures based on a long short-term memory (LSTM) machine learning model. Furthermore, we introduce an open source approach that is ready-to-deploy on commodity touch-based devices. The model was trained on a new dataset that we collected in a mobile interaction study with 18 participants. We show that our method can achieve an accuracy of 86.8% on recognizing one of the 17 gestures and an accuracy of 94.6% to differentiate between finger and knuckle. In our evaluation study, we validate our models and found that the LSTM gestures recognizing archived an accuracy of 88.6%. We show that KnuckleTouch can be used to improve the input expressiveness and to provide shortcuts to frequently used functions.