Auflistung nach Schlagwort "data set generation"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- TextdokumentOngoing Automated Data Set Generation for Vulnerability Prediction from Github Data(GI SICHERHEIT 2022, 2022) Hinrichs, TorgeThis paper describes the development of a continuous github repository analysis pipeline with the focus on creating a data set for vulnerability prediction in source code. Currently, used data sets consist only of source code functions or methods without additional meta information. This paper assumes that the surrounding code of vulnerable functions can be beneficial to the detection rate. In order to test this assumption, large data sets are needed that can be created using the proposed pipeline. Although the pipeline requires some improvements, in a first test run 1.5 million repositories could be analyzed and evaluated. The resulting data set will be published in the future.
- KonferenzbeitragTowards selective hoeing depending on evaporation from the soil(43. GIL-Jahrestagung, Resiliente Agri-Food-Systeme, 2023) Manss, Christoph; von Szadkowski, Kai; Bald, Janis; Richard, David; Scholz, Christian; König, Daniel; Ruckelshausen, ArnoThis paper presents how to generate an artificial dataset to test different hoeing rules. Therefore, images that have been obtained on two days of a field trial are analysed to infer weed and crop sizes. Then, weather data from 2021 and 2022 is gathered from open-source data for 100 synthetically generated fields. The generated dataset is then used to test hoeing rules that are conditioned to keep as much moisture in the soil as possible. The analysis with these hoeing rules indicates that much less hoeing would be applied if the proposed hoeing rules are used.