Auflistung nach Schlagwort "data stream"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragBenchmarking Stream Processing Frameworks for Large Scale Data Shuffling(Softwaretechnik-Trends Band 43, Heft 4, 2023) Henning, Sören; Vogel, Adriano; Leichtfried, Michael; Ertl, Otmar; Rabiser, RickDistributed stream processing frameworks help building scalable and reliable applications that perform transformations and aggregations on continuous data streams. We outline our ongoing research on designing a new benchmark for distributed stream processing frameworks. In contrast to other benchmarks, it focuses on use cases where stream processing frameworks are mainly used for redistributing data records to perform state-local aggregations, while the actual aggregation logic is considered as black-box software components. We describe our benchmark architecture based on a real-world use case, show how we imple mented it with four state-of-the-art frameworks, and give an overview of initial experimental results.
- TextdokumentKonzept und Implementierung eines echtzeitfähigen Model Management Systems(BTW 2019, 2019) Hegenbarth, Yvonne; Ristow, GeraldZur Gewährleistung der Stromnetzstabilität in Deutschland müssen Verteilernetzbetreiber darauf achten, dass zu jedem Zeitpunkt Energie-Erzeugung und -Verbrauch in ihrem Zuständig-keitsbereich in Einklang stehen. Dafür werden Vorhersagemodelle benötigt, um den zu erwartenden Überschuß oder zusätzlichen Bedarf an Energie für den Folgetag der Strombörse für den sogenannten Day-Ahead Handel zu melden. Neben dem Stromhandel für den Folgetag können Marktteilnehmer beim kontinuierlichen Intraday Strommengen bis zu fünf Minuten vor der tatsächlichen Auslieferung kaufen oder verkaufen. Bei Fehlprognosen und demnach Fehleinkäufen könnte mit einer Früherken-nung und Modellanpassung diese im Intraday ausgeglichen werden. Dazu wird in dieser Arbeit ein System beschrieben, das automatisiert Fehlprognosen frühzeitig erkennt und eine Modelländerung durchführt. Das Modell wird dabei an den aktuellen Sachverhalt der Verbrauchszeitreihe angepasst. Durch diese Modellanpassung wird die Vorhersage verbessert, sodass der Intraday Handel besser betrieben werden kann und Fehleinkäufe ausgeglichen werden.