Auflistung nach Schlagwort "inclusion dependencies"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragDPQL: The Data Profiling Query Language(BTW 2023, 2023) Seeger, Marcian; Schmidl, Sebastian; Vielhauer, Alexander; Papenbrock, ThorstenAbstract: Data profiling describes the activity of extracting implicit metadata, such as schema descriptions, data types, and various kinds of data dependencies, from a given data set. The considerable amount of research papers about novel metadata types and ever-faster data profiling algorithms emphasize the importance of data profiling in practice. Unfortunately, though, the current state of data profiling research fails to address practical application needs: Typical data profiling algorithms (i. e., challenging to operate structures) discover all (i. e., too many) minimal (i. e., the wrong) data dependencies within minutes to hours (i. e., too long). Consequently, if we look at the practical success of our research, we find that data profiling targets data cleaning, but most cleaning systems still use only hand-picked dependencies; data profiling targets query optimization, but hardly any query optimizer uses modern discovery algorithms for dependency extraction; data profiling targets data integration, but the application of automatically discovered dependencies for matching purposes is yet to be shown -and the list goes on. We aim to solve the profiling-and-application-disconnect with a novel data profiling engine that integrates modern profiling techniques for various types of data dependencies and provides the applications with a versatile, intuitive, and declarative Data Profiling Query Language (DPQL). The DPQL enables applications to specify precisely what dependencies are needed, which not only refines the results and makes the data profiling process more accessible but also enables much faster and (in terms of dependency types and selections) holistic profiling runs. We expect that integrating modern data profiling techniques and the post-processing of their results under a single application endpoint will result in a series of significant algorithmic advances, new pruning concepts, and a profiling engine with innovative components for workload auto-configuration, query optimization, and parallelization. With this paper, we present the first version of the DPQL syntax and introduce a fundamentally new line of research in data profiling.
- KonferenzbeitragFast Approximate Discovery of Inclusion Dependencies(Datenbanksysteme für Business, Technologie und Web (BTW 2017), 2017) Kruse, Sebastian; Papenbrock, Thorsten; Dullweber, Christian; Finke, Moritz; Hegner, Manuel; Zabel, Martin; Zöllner, Christian; Naumann, FelixInclusion dependencies (INDs) are relevant to several data management tasks, such as foreign key detection and data integration, and their discovery is a core concern of data profiling. However, n-ary IND discovery is computationally expensive, so that existing algorithms often perform poorly on complex datasets. To this end, we present F , the first approximate IND discovery algorithm. F combines probabilistic and exact data structures to approximate the INDs in relational datasets. In fact, F guarantees to find all INDs and only with a low probability false positives might occur due to the approximation. This little inaccuracy comes in favor of significantly increased performance, though. In our evaluation, we show that F scales to very large datasets and outperforms the state-of-the-art algorithm by a factor of up to six in terms of runtime without reporting any false positives. This shows that F strikes a good balance between efficiency and correctness.