Auflistung nach Schlagwort "input device"
1 - 2 von 2
Treffer pro Seite
Sortieroptionen
- KonferenzbeitragComparing the Effectiveness and Ergonomics of Smartphone-Based Gamepads(Proceedings of Mensch und Computer 2024, 2024) Wührl, Christoph; Schmid, Andreas; Hößl, Sabrina; Wimmer, RaphaelEven though smartphones offer a broad design space for being used as input devices for video games, their form factor makes them less ergonomic than physical gamepads. Previous research suggests that customizable controller layouts and added haptic feedback can improve the quality of smartphone-based gamepads. However, there are no rigorous user studies comparing different types of smartphone controllers to each other. In this paper, we present results of a user study in which we compared three different smartphone-based gamepads: a smartphone controller with a standard layout, a customizable smartphone controller, and a smartphone controller with a haptic case. Additionally, we included a physical gamepad as a reference in our study. Participants used the different controllers to play a racing game and complete pointing tasks. We found that the physical gamepad outperforms smartphone-based controllers in terms of efficiency, but there was no significant difference in effectiveness. Furthermore, our qualitative findings open up design considerations for future improvements of smartphone-based game controllers.
- WorkshopbeitragUsing an Infrared Pen as an Input Device for Projected Augmented Reality Tabletops(Mensch und Computer 2022 - Workshopband, 2022) Maierhöfer, Vitus; Schmid, Andreas; Wimmer, RaphaelInteractive tabletops do not only offer a large surface for collaborative interaction. They also offer quick access to digital tools directly at the table - where a large number of everyday activities take place. Tabletops with an embedded display are generally less flexible and more fragile than ordinary massive tabletops. Physical objects on the tabletop occlude the digital content. In contrast, top-down-projected interfaces using an overhead camera-projector system allow for augmenting arbitrary tables and the object lying on them. However, detecting pointing input only via a camera image captured from above requires robustly recognizing whether a finger or pen touches the tabletop or whether it hovers slightly above it. In this paper, we present a solution for reliably tracking a pen on arbitrary tabletop surfaces. The pen emits infrared light via a tip made of optical fiber. A camera captures position and shape of the light point on the surface. Our open-source tracking algorithm combines heuristics and a machine learning model to distinguish between drawing and hovering. A pilot study with 7 participants shows that that this system can be reliably used for drawing and writing on tabletops. However, occlusion by users’ hands can deteriorate tracking of the pen.