Zeitschriftenartikel
OPEN—Enabling Non-expert Users to Extract, Integrate, and Analyze Open Data
Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Journal Article
Zusatzinformation
Datum
2012
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Springer
Zusammenfassung
Government initiatives for more transparency and participation have lead to an increasing amount of structured data on the web in recent years. Many of these datasets have great potential. For example, a situational analysis and meaningful visualization of the data can assist in pointing out social or economic issues and raising people’s awareness. Unfortunately, the ad-hoc analysis of this so-called Open Data can prove very complex and time-consuming, partly due to a lack of efficient system support.On the one hand, search functionality is required to identify relevant datasets. Common document retrieval techniques used in web search, however, are not optimized for Open Data and do not address the semantic ambiguity inherent in it. On the other hand, semantic integration is necessary to perform analysis tasks across multiple datasets. To do so in an ad-hoc fashion, however, requires more flexibility and easier integration than most data integration systems provide. It is apparent that an optimal management system for Open Data must combine aspects from both classic approaches.In this article, we propose OPEN, a novel concept for the management and situational analysis of Open Data within a single system. In our approach, we extend a classic database management system, adding support for the identification and dynamic integration of public datasets. As most web users lack the experience and training required to formulate structured queries in a DBMS, we add support for non-expert users to our system, for example though keyword queries. Furthermore, we address the challenge of indexing Open Data.