GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • Software Engineering
  • P267 - Software Engineering 2017
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • Software Engineering
  • P267 - Software Engineering 2017
  • View Item

On Automated Anomaly Detection for Potentially Unbounded Cardinality-based Feature Models

Author:
Weckesser, Markus [DBLP] ;
Lochau, Malte [DBLP] ;
Schnabel, Thomas [DBLP] ;
Richerzhagen, Björn [DBLP] ;
Schürr, Andy [DBLP]
Abstract
In this work, we report about our research results on analysis of cardinality-based fea- ture models with potentially unbounded feature multiplicities, initially published in [We16]. Feature models are frequently used for specifying variability of user-configurable software systems, e.g., software product lines. Numerous approaches have been developed for automating feature model validation concerning constraint consistency and absence of anomalies. As a crucial extension to feature models, cardinality annotations allow for multiple, and even potentially unbounded occur- rences of feature instances within configurations. This is of particular relevance for user-adjustable application resources as prevalent, e.g., in cloud-based systems where not only the type, but also the amount of available resources is explicitly configurable. However, a precise semantic characteriza- tion and tool support for automated and scalable validation of cardinality-based feature models is still an open issue. We present a comprehensive formalization of cardinality-based feature models with potentially unbounded feature multiplicities. We apply a combination of ILP and SMT solvers to automate consistency checking and anomaly detection, including novel anomalies, e.g., interval gaps. Furthermore, we show evaluation results gained from our tool implementation showing appli- cability and scalability of our approach to larger-scale models.
  • Citation
  • BibTeX
Weckesser, M., Lochau, M., Schnabel, T., Richerzhagen, B. & Schürr, A., (2017). On Automated Anomaly Detection for Potentially Unbounded Cardinality-based Feature Models. In: Jürjens, J. & Schneider, K. (Hrsg.), Software Engineering 2017. Bonn: Gesellschaft für Informatik e.V.. (S. 125).
@inproceedings{mci/Weckesser2017,
author = {Weckesser, Markus AND Lochau, Malte AND Schnabel, Thomas AND Richerzhagen, Björn AND Schürr, Andy},
title = {On Automated Anomaly Detection for Potentially Unbounded Cardinality-based Feature Models},
booktitle = {Software Engineering 2017},
year = {2017},
editor = {Jürjens, Jan AND Schneider, Kurt} ,
pages = { 125 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
paper49.pdf52.53Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-661-9
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2017
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Software Product Lines
  • Cloud-based Systems
  • Cardinality-based Feature Models
  • Inte- ger Linear Programming (ILP)
Collections
  • P267 - Software Engineering 2017 [57]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.