Logo des Repositoriums
 
Konferenzbeitrag

Duplicate detection on GPUs

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2013

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

With the ever increasing volume of data and the ability to integrate different data sources, data quality problems abound. Duplicate detection, as an integral part of data cleansing, is essential in modern information systems. We present a complete duplicate detection workflow that utilizes the capabilities of modern graphics processing units (GPUs) to increase the efficiency of finding duplicates in very large datasets. Our solution covers several well-known algorithms for pair selection, attribute-wise similarity comparison, record-wise similarity aggregation, and clustering. We redesigned these algorithms to run memory-efficiently and in parallel on the GPU. Our experiments demonstrate that the GPU-based workflow is able to outperform a CPU-based implementation on large, real-world datasets. For instance, the GPU-based algorithm deduplicates a dataset with 1.8m entities 10 times faster than a common CPU-based algorithm using comparably priced hardware.

Beschreibung

Forchhammer, Benedikt; Papenbrock, Thorsten; Stening, Thomas; Viehmeier, Sven; Draisbach, Uwe; Naumann, Felix (2013): Duplicate detection on GPUs. Datenbanksysteme für Business, Technologie und Web (BTW) 2024. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-608-4. pp. 165-184. Regular Research Papers. Magdeburg. 13.-15. März 2013

Schlagwörter

Zitierform

DOI

Tags