GI LogoGI Logo
  • Anmelden
Digitale Bibliothek
    • Gesamter Bestand

      • Bereiche & Sammlungen
      • Titel
      • Autor
      • Erscheinungsdatum
      • Schlagwort
    • Diese Sammlung

      • Titel
      • Autor
      • Erscheinungsdatum
      • Schlagwort
Digital Bibliothek der Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • Deutsch 
    • English
    • Deutsch
Dokumentanzeige 
  •   Startseite
  • Lecture Notes in Informatics
  • Proceedings
  • Software Engineering
  • P213 - Software Engineering 2013
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   Startseite
  • Lecture Notes in Informatics
  • Proceedings
  • Software Engineering
  • P213 - Software Engineering 2013
  • Dokumentanzeige

Improved prediction of non-functional properties in software product lines with domain context

Autor(en):
Lillack, Max [DBLP] ;
Müller, Johannes [DBLP] ;
Eisenecker, Ulrich W. [DBLP]
Zusammenfassung
Software Product Lines (SPLs) enable software reuse by systematically managing commonalities and variability. Usually, commonalities and variability are expressed by features. Functional requirements of a software product are met by selecting appropriate features. However, selecting features also influences non-functional properties. To satisfy non-functional requirements of a software product, as well, the effect of a feature selection on non-functional properties has to be known. Often an SPL allows a vast number of valid products, which renders a test of non-functional properties on the basis of all valid products impractical. Recent research offers a solution to this problem: the effect of features on non-functional properties of software products is predicted by measuring in advance. A sample of feature configurations is generated, executed with a predefined benchmark, and then non-functional properties are measured. Based on these data a model is created that allows to predict non-functional properties of a software product before actually building it. However, in some domains contextual influences, such as input data, can heavily affect nonfunctional properties. We argue that the measurement of the effect of features on non-functional properties can be drastically improved by considering contextual influences of a domain. We study this assumption on input data as an example for a contextual influence and using an artificial but intuitive case study from the domain of compression algorithms. Our study shows that prediction accuracy of non-functional properties can be significantly improved.
  • Vollständige Referenz
  • BibTeX
Lillack, M., Müller, J. & Eisenecker, U. W., (2013). Improved prediction of non-functional properties in software product lines with domain context. In: Kowalewski, S. & Rumpe, B. (Hrsg.), Software Engineering 2013. Bonn: Gesellschaft für Informatik e.V.. (S. 185-198).
@inproceedings{mci/Lillack2013,
author = {Lillack, Max AND Müller, Johannes AND Eisenecker, Ulrich W.},
title = {Improved prediction of non-functional properties in software product lines with domain context},
booktitle = {Software Engineering 2013},
year = {2013},
editor = {Kowalewski, Stefan AND Rumpe, Bernhard} ,
pages = { 185-198 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
185.pdf115.2Kb PDF Öffnen

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Feedback abschicken

Mehr Information

ISBN: 978-3-88579-607-7
ISSN: 1617-5468
Datum: 2013
Sprache: en (en)
Typ: Text/Conference Paper
Sammlungen
  • P213 - Software Engineering 2013 [36]

Zur Langanzeige


Über uns | FAQ | Hilfe | Impressum | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


Über uns | FAQ | Hilfe | Impressum | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.