Show simple item record

dc.contributor.authorTetzlaff, Dirk
dc.contributor.authorGlesner, Sabine
dc.contributor.editorJähnichen, Stefan
dc.contributor.editorRumpe, Bernhard
dc.contributor.editorSchlingloff, Holger
dc.date.accessioned2018-11-19T13:30:02Z
dc.date.available2018-11-19T13:30:02Z
dc.date.issued2012
dc.identifier.isbn978-3-88579-293-2
dc.identifier.issn1617-5468
dc.identifier.urihttp://dl.gi.de/handle/20.500.12116/18377
dc.description.abstractMapping parallel applications to multi-processor architectures requires information about the execution times of the concurrent processes to find an optimal allocation and must take into account the interprocessor communication at runtime, whose overheads have emerged as the major performance limitation. However, both information cannot be statically known in advance. In this paper we present a sophisticated approach for mapping parallel MPI applications to concurrent architectures using machine learning techniques. This automatically generates heuristics that provide the compiler with knowledge of the considered runtime behavior, hence yielding more precise heuristics than those generated by pure static analyses. The heuristics can be used to direct the runtime environment of MPI, which enables the reallocation of processes to other processors at runtime and, furthermore, results in a better initial allocation of MPI processes.en
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2012. Workshopband
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-199
dc.titleMaking MPI intelligenten
dc.typeText/Conference Paper
dc.pubPlaceBonn
mci.reference.pages75-88
mci.conference.sessiontitleRegular Research Papers
mci.conference.locationBerlin
mci.conference.date27. Februar - 2. März 2012


Files in this item

Thumbnail

Show simple item record