GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P192 - INFORMATIK 2011 - Informatik schafft Communities
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P192 - INFORMATIK 2011 - Informatik schafft Communities
  • View Item

Automatic generation of large causal Bayesian networks from user oriented models

Author:
Ziegler, Jürgen [DBLP] ;
Haarmann, Bastian [DBLP]
Abstract
Bayesian networks (BN) are a valid method to analyze causal dependencies with uncertainties and to calculate inferences based on evidences. This paper describes a method to enable domain experts to configure and use large causal Bayesian networks without the help of BN experts. For this the structure of the domain model is defined together with the domain expert. The dependencies of the domain model are weighted qualitatively. After that the domain model is translated into a well-defined BN. Within the BN the usual causal and diagnostic inferences can be calculated. The results are translated back into the domain model and presented to the user. The back translation also allows the presentation of the reasons of the inference results by using the causal dependencies of the BN. The translation processes allow translating user hypothesis by generating and calculating different BNs. As a benefit the method allows to generate and use large BN (with hundred of nodes) without excessive effort. Obviously in this approach probabilities are used in a special way. To motivate this, Bayesian probability concept is discussed before introducing the method. The method is illustrated by the example ,,Recognition of asymmetric or terroristic threats”. At the end of the paper it is illustrated that the method can be used for different domains by a short description of the method’s possible application to the domain ,,medical diagnosis”. This paper does not deal with the theory of Bayesian Networks but with their efficient use.
  • Citation
  • BibTeX
Ziegler, J. & Haarmann, B., (2011). Automatic generation of large causal Bayesian networks from user oriented models. In: Heiß, H.-U., Pepper, P., Schlingloff, H. & Schneider, J. (Hrsg.), INFORMATIK 2011 – Informatik schafft Communities. Bonn: Gesellschaft für Informatik e.V.. (S. 501-501).
@inproceedings{mci/Ziegler2011,
author = {Ziegler, Jürgen AND Haarmann, Bastian},
title = {Automatic generation of large causal Bayesian networks from user oriented models},
booktitle = {INFORMATIK 2011 – Informatik schafft Communities},
year = {2011},
editor = {Heiß, Hans-Ulrich AND Pepper, Peter AND Schlingloff, Holger AND Schneider, Jörg} ,
pages = { 501-501 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
501.pdf18.18Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-88579-286-4
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2011
Language: en (en)
Content Type: Text/Conference Paper
Collections
  • P192 - INFORMATIK 2011 - Informatik schafft Communities [324]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.