GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • German Conference on Bioinformatics
  • P173 - GCB 2010 - German Conference on Bioinformatics 2010
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • German Conference on Bioinformatics
  • P173 - GCB 2010 - German Conference on Bioinformatics 2010
  • View Item

Uncovering the structure of heterogenous biological data: fuzzy graph partitioning in the k-partite setting

Author:
Blöchl, Florian [DBLP] ;
Hartsperger, Maria L. [DBLP] ;
Stümpflen, Volker [DBLP] ;
Theis, Fabian J. [DBLP]
Abstract
With the increasing availability of large-scale interaction networks derived either from experimental data or from text mining, we face the challenge of interpreting and analyzing these data sets in a comprehensive fashion. A particularity of these networks, which sets it apart from other examples in various scientific fields lies in their k-partiteness. Whereas graph partitioning has received considerable attention, only few researchers have focused on this generalized situation. Recently, Long et al. have proposed a method for jointly clustering such a network and at the same time estimating a weighted graph connecting the clusters thereby allowing simple interpretation of the resulting clustering structure. In this contribution, we extend this work by allowing fuzzy clusters for each node type. We propose an extended cost function for partitioning that allows for overlapping clusters. Our main contribution lies in the novel efficient minimization procedure, mimicking the multiplicative update rules employed in algorithms for non-negative matrix factorization. Results on clustering a manually annotated bipartite gene-complex graph show significantly higher homogeneity between gene and corresponding complex clusters than expected by chance. The algorithm is freely available at http://cmb.helmholtz-muenchen.de/ fuzzyclustering.
  • Citation
  • BibTeX
Blöchl, F., Hartsperger, M. L., Stümpflen, V. & Theis, F. J., (2010). Uncovering the structure of heterogenous biological data: fuzzy graph partitioning in the k-partite setting. In: Schomburg, D. & Grote, A. (Hrsg.), German Conference on Bioinformatics 2010. Bonn: Gesellschaft für Informatik e.V.. (S. 31-40).
@inproceedings{mci/Blöchl2010,
author = {Blöchl, Florian AND Hartsperger, Maria L. AND Stümpflen, Volker AND Theis, Fabian J.},
title = {Uncovering the structure of heterogenous biological data: fuzzy graph partitioning in the k-partite setting},
booktitle = {German Conference on Bioinformatics 2010},
year = {2010},
editor = {Schomburg, Dietmar AND Grote, Andreas} ,
pages = { 31-40 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
31.pdf361.9Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-267-3
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2010
Language: en (en)
Content Type: Text/Conference Paper
Collections
  • P173 - GCB 2010 - German Conference on Bioinformatics 2010 [13]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.