GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • Sicherheit
  • P228 - Sicherheit 2014 - Sicherheit, Schutz und Zuverlässigkeit
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • Sicherheit
  • P228 - Sicherheit 2014 - Sicherheit, Schutz und Zuverlässigkeit
  • View Item

Privacy-preserving verification of clinical research

Author:
Makri, Eleftheria [DBLP] ;
Everts, Maarten H. [DBLP] ;
Hoogh, Sebastiaan De [DBLP] ;
Peter, Andreas [DBLP] ;
Akker, Harm Op Den [DBLP] ;
Hartel, Pieter [DBLP] ;
Jonker, Willem [DBLP]
Abstract
We treat the problem of privacy-preserving statistics verification in clinical research. We show that given aggregated results from statistical calculations, we can verify their correctness efficiently, without revealing any of the private inputs used for the calculation. Our construction is based on the primitive of Secure Multi-Party Computation from Shamir's Secret Sharing. Basically, our setting involves three parties: a hospital, which owns the private inputs, a clinical researcher, who lawfully processes the sensitive data to produce an aggregated statistical result, and a third party (usually several verifiers) assigned to verify this result for reliability and transparency reasons. Our solution guarantees that these verifiers only learn about the aggregated results (and what can be inferred from those about the underlying private data) and nothing more. By taking advantage of the particular scenario at hand (where certain intermediate results, e.g., the mean over the dataset, are available in the clear) and utilizing secret sharing primitives, our approach turns out to be practically efficient, which we underpin by performing several experiments on real patient data. Our results show that the privacy-preserving verification of the most commonly used statistical operations in clinical research presents itself as an important use case, where the concept of secure multi-party computation becomes employable in practice.
  • Citation
  • BibTeX
Makri, E., Everts, M. H., Hoogh, S. D., Peter, A., Akker, H. O., Hartel, P. & Jonker, W., (2014). Privacy-preserving verification of clinical research. In: Katzenbeisser, S., Lotz, V. & Weippl, E. (Hrsg.), Sicherheit 2014 – Sicherheit, Schutz und Zuverlässigkeit. Bonn: Gesellschaft für Informatik e.V.. (S. 481-500).
@inproceedings{mci/Makri2014,
author = {Makri, Eleftheria AND Everts, Maarten H. AND Hoogh, Sebastiaan De AND Peter, Andreas AND Akker, Harm Op Den AND Hartel, Pieter AND Jonker, Willem},
title = {Privacy-preserving verification of clinical research},
booktitle = {Sicherheit 2014 – Sicherheit, Schutz und Zuverlässigkeit},
year = {2014},
editor = {Katzenbeisser, Stefan AND Lotz, Volkmar AND Weippl, Edgar} ,
pages = { 481-500 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
481.pdf179.3Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-622-0
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2014
Language: en (en)
Content Type: Text/Conference Paper
Collections
  • P228 - Sicherheit 2014 - Sicherheit, Schutz und Zuverlässigkeit [38]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.