GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Community

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
Search 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Search

Search

DiscoverDiscover

Filters

Use filters to refine the search results.

Now showing items 1-5 of 5

Results Per Page:Sort Options:

Predicting How to Test Requirements: An Automated Approach 

Software Engineering 2020 Winkler, Jonas; Grönberg, Jannis; Vogelsang, Andreas
An important task in requirements engineering is to identify and determine how to verify a requirement (eg., by manual review, testing, or simulation; also called \emphpotential verification method). This information is required to effectively create test cases and verification plans for requirements. In this paper, ...

Investigating Next Steps in Static API-Misuse Detection 

Software Engineering 2020 Amann, Sven; Nguyen, Hoan Anh; Nadi, Sarah; Nguyen, Tien N.; Mezini, Mira

Fusion von Bilddaten und IoT-Funksensordaten im pflanzenbaulichen Feldversuchswesen 

40. GIL-Jahrestagung, Digitalisierung für Mensch, Umwelt und Tier Heckmann, Andreas; Paulus, Stefan
Ein Hemmnis beim Einsatz der digitalen Technologien stellt die mangelnde Zuverlässigkeit bzw. die Ungenauigkeit von Entscheidungshilfesystemen, insbesondere zur teilflächenspezifischen Vorhersage von Biomassewachstum, Krankheiten oder Nährstoffstress, dar. Mit dem Feldversuch „Fieldloop“ werden unterschiedliche Sensortechniken ...

A Model-Assisted and Data-Driven Ecosystem Based on Digital Shadows 

40 Years EMISA 2019 Jarke, Matthias
Data-driven machine learning methods are typically most successful when they can rely on very large and in some sense, homogeneous training sets in areas where little prior scientific knowledge exists. Production engineering, management, and usage satisfy few of these criteria and therefore do not show very many success ...

Teaching Machine Learning and Data Literacy to Students of Logistics using Jupyter Notebooks 

DELFI 2020 – Die 18. Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V. Kastner, Marvin; Franzkeit, Janna; Lainé, Anna
Teaching machine learning in fields outside of computer sciences can be challenging when the students do not have a solid code knowledge. In this work, the requirements for teaching data literacy and code literacy to students of logistics are explored. Specifically, the use of Jupyter Notebooks in a machine learning ...

About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 

Discover

Author

Amann, Sven (1)Franzkeit, Janna (1)Grönberg, Jannis (1)Heckmann, Andreas (1)Jarke, Matthias (1)Kastner, Marvin (1)Lainé, Anna (1)Mezini, Mira (1)Nadi, Sarah (1)Nguyen, Hoan Anh (1)... View More

Subject

Machine Learning (5)
API Misuse (1)Bug Detection (1)Code Literacy (1)Constraint Mining (1)Data Literacy (1)Data Science (1)Digital Shadows (1)Internet der Dinge und mobile Vernetzung (1)Internet of Production (1)... View More

Date Issued

2020 (5)

Has File(s)

Yes (5)

About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.