Logo des Repositoriums
 
Konferenzbeitrag

What Does My Classifier Learn? A Visual Approach to Understanding Natural Language Text Classifiers

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2018

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik

Zusammenfassung

Neural Networks have been utilized to solve various tasks such as image recognition, text classification, and machine translation and have achieved exceptional results in many of these tasks. However, understanding the inner workings of neural networks and explaining why a certain output is produced are no trivial tasks. Especially when dealing with text classification problems, an approach to explain network decisions may greatly increase the acceptance of neural network supported tools. In this paper, we present an approach to visualize reasons why a classification outcome is produced by convolutional neural networks by tracing back decisions made by the network. The approach is applied to various text classification problems, including our own requirements engineering related classification problem. We argue that by providing these explanations in neural network supported tools, users will use such tools with more confidence and also may allow the tool to do certain tasks automatically.

Beschreibung

Winkler, Jonas Paul; Vogelsang, Andreas (2018): What Does My Classifier Learn? A Visual Approach to Understanding Natural Language Text Classifiers. Software Engineering und Software Management 2018. Bonn: Gesellschaft für Informatik. PISSN: 1617-5468. ISBN: 978-3-88579-673-2. pp. 223-224. Software Management 2018 - Wissenschaftliches Hauptprogramm. Ulm. 5.-9. März 2018

Zitierform

DOI

Tags