GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Community

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
Search 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • German Conference on Bioinformatics
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • German Conference on Bioinformatics
  • Search

Search

DiscoverDiscover

Filters

Use filters to refine the search results.

Now showing items 1-4 of 4

Results Per Page:Sort Options:

A general approach for discriminative de novo motif discovery from high-throughput data 

German conference on bioinformatics 2014 Grau, Jan; Posch, Stefan; Grosse, Ivo; Keilwagen, Jens
High-throughput techniques like ChIP-seq, ChIP-exo, and protein binding microarrays (PBMs) demand for novel de novo motif discovery approaches that focus on accuracy and runtime on large data sets. While specialized algorithms have been designed for discovering motifs in in-vivo ChIP-seq/ChIP-exo or in in-vitro PBM data, ...

Utilizing promoter pair orientations for HMM-based analysis of ChIP-chip data 

German Conference on Bioinformatics Seifert, Michael; Keilwagen, Jens; Strickert, Marc; Grosse, Ivo
Array-based analysis of chromatin immunoprecipitation data (ChIP-chip) is a powerful technique for identifying DNA target regions of individual transcription factors. Here, we present three approaches, a standard log-fold-change analysis (LFC), a basic method based on a Hidden Markov Model (HMM), and an ex- tension of ...

Supervised posteriors for DNA-motif classification 

German conference on bioinformatics – GCB 2007 Grau, Jan; Keilwagen, Jens; Kel, Alexander; Grosse, Ivo; Posch, Stefan
Markov models have been proposed for the classification of DNA-motifs using generative approaches for parameter learning. Here, we propose to apply the discriminative paradigm for this problem and study two different priors to facilitate parameter estimation using the maximum supervised posterior. Considering seven sets ...

Predicting miRNA targets utilizing an extended profile HMM 

German Conference on Bioinformatics 2010 Grau, Jan; Arend, Daniel; Grosse, Ivo; Hatzigeorgiou, Artemis G.; Keilwagen, Jens; Maragkakis, Manolis; Weinholdt, Claus; Posch, Stefan
The regulation of many cellular processes is influenced by miRNAs, and bioinformatics approaches for predicting miRNA targets evolve rapidly. Here, we propose conditional profile HMMs that learn rules of miRNA-target site interaction automatically from data. We demonstrate that conditional profile HMMs detect the rules ...

About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 

Discover

Author

Grosse, Ivo (4)
Keilwagen, Jens (4)
Grau, Jan (3)Posch, Stefan (3)Arend, Daniel (1)Hatzigeorgiou, Artemis G. (1)Kel, Alexander (1)Maragkakis, Manolis (1)Seifert, Michael (1)Strickert, Marc (1)... View More

Date Issued

2007 (1)2008 (1)2010 (1)2014 (1)

Has File(s)

Yes (4)

About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.