Logo des Repositoriums
 
Textdokument

Automated Architecture-Modeling for Convolutional Neural Networks

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Tuning hyperparameters can be very counterintuitive and misleading, yet it plays a big (or even the biggest) part in many machine learning algorithms. For instance, finding the right architecture for an artificial neural network (ANN) can also be seen as a hyperparameter e.g. number of convolutional layers, number of fully connected layers etc. Tuning these can be done manually or by techniques such as grid search or random search. Even then finding optimal hyperparameters seems to be impossible. This paper tries to counter this problem by using bayesian optimization, which finds optimal parameters, including the right architecture for ANNs. In our case, a histological image dataset was used to classify breast cancer into stages.

Beschreibung

Duong, Manh Khoi (2019): Automated Architecture-Modeling for Convolutional Neural Networks. BTW 2019 – Workshopband. DOI: 10.18420/btw2019-ws-17. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-684-8. pp. 163-172. Studierendenprogramm. Rostock. 4.-8. März 2019

Zitierform

Tags