Konferenzbeitrag
LiDAR- und Lichtschattensensor-basierte Sensordaten-fusion zur feldbasierten Phänotypisierung von Getreide
Lade...
Volltext URI
Dokumententyp
Text/Conference Paper
Zusatzinformation
Datum
2019
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
In diesem Dokument werden komplementäre Sensorfusionsansätze zur feldbasierten Hochdurchsatz-Phänotypisierung von Triticale auf Grundlage bildgebender LiDAR- und Lichtschattensensor-Daten vorgestellt. Die Sensordaten wurden mit der Multisensor-Plattform „BreedVision“ gewonnen. Zur Bestimmung des parzellenbezogenen Parameters werden die Messdaten von LiDAR- und Lichtschattensensor fusioniert. Mit Methoden des überwachten maschinellen Lernens wird ein Biomasse-Vorhersagemodell erstellt. Die extrahierten Pflanzenmerkmale werden auf feldbasierte Daten von 1503 Versuchsparzellen an zwei Versuchsstandorten für je zwei Wachstumsstadien trainiert. Das exponentielle Gauß'sche Prozessregressionsmodell wird mittels der Funktionen in MATLAB® entwickelt.