GI LogoGI Logo
  • Anmelden
Digitale Bibliothek
    • Gesamter Bestand

      • Bereiche & Sammlungen
      • Titel
      • Autor
      • Erscheinungsdatum
      • Schlagwort
    • Diese Sammlung

      • Titel
      • Autor
      • Erscheinungsdatum
      • Schlagwort
Digital Bibliothek der Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • Deutsch 
    • English
    • Deutsch
Dokumentanzeige 
  •   Startseite
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P282 - BIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   Startseite
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P282 - BIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group
  • Dokumentanzeige

Facial Attribute Guided Deep Cross-Modal Hashing for Face Image Retrieval

Autor(en):
Taherkhani, Fariborz [DBLP] ;
Talreja, Veeru [DBLP] ;
Kazemi, Hadi [DBLP] ;
Nasrabadi, Nasser [DBLP]
Zusammenfassung
Hashing-based image retrieval approaches have attracted much attention due to their fast query speed and low storage cost. In this paper, we propose an Attribute-based Deep Cross Modal Hashing (ADCMH) network which takes facial attribute modality as a query to retrieve relevant face images. The ADCMH network can efficiently generate compact binary codes to preserve similarity between two modalities (i.e., facial attribute and image modalities) in the Hamming space. Our ADCMH is an end to end deep cross-modal hashing network, which jointly learns similarity preserving features and also compensates for the quantization error due to the hashing of the continuous representation of modalities to binary codes. Experimental results on two standard datasets with facial attributes-image modalities indicate that our ADCMH face image retrieval model outperforms most of the current attribute-guided face image retrieval approaches, which are based on hand crafted features.
  • Vollständige Referenz
  • BibTeX
Taherkhani, F., Talreja, V., Kazemi, H. & Nasrabadi, N., (2018). Facial Attribute Guided Deep Cross-Modal Hashing for Face Image Retrieval. In: Brömme, A., Busch, C., Dantcheva, A., Rathgeb, C. & Uhl, A. (Hrsg.), BIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group. Bonn: Köllen Druck+Verlag GmbH.
@inproceedings{mci/Taherkhani2018,
author = {Taherkhani, Fariborz AND Talreja, Veeru AND Kazemi, Hadi AND Nasrabadi, Nasser},
title = {Facial Attribute Guided Deep Cross-Modal Hashing for Face Image Retrieval},
booktitle = {BIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group},
year = {2018},
editor = {Brömme, Arslan AND Busch, Christoph AND Dantcheva, Antitza AND Rathgeb, Christian AND Uhl, Andreas},
publisher = {Köllen Druck+Verlag GmbH},
address = {Bonn}
}
DateienGroesseFormatAnzeige
BIOSIG_2018_paper_21.pdf1.355Mb PDF Öffnen

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Feedback abschicken

Mehr Information

ISBN: 978-3-88579-676-4
ISSN: 1617-5468
Datum: 2018
Sprache: en (en)
Typ: Text/Conference Paper

Keywords

  • Facial Attributes
  • Face Image Retrieval
  • Deep Hashing Network.
Sammlungen
  • P282 - BIOSIG 2018 - Proceedings of the 17th International Conference of the Biometrics Special Interest Group [32]

Zur Langanzeige


Über uns | FAQ | Hilfe | Impressum | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


Über uns | FAQ | Hilfe | Impressum | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.