Sensor Based Adaptive Learning - Lessons Learned
Abstract
Recent advances in sensor technology allow for investigating emotional and cognitive states of learners. However, making use of sensor data is a complex endeavor, even more so when considering physiological data to support learning. In the BMBF-funded project Learning Analytics for sensor-based adaptive learning (LISA), we developed a comprehensive solution for adaptive learning using sensor data for acquiring skin conductance, heart rate, as well as environmental factors (e.g. CO2). In particular, we developed, (i) a sensor wristband acquiring physiological and environmental data, (ii) a tablet application (SmartMonitor) for monitoring and visualizing sensor data, (iii) a learning analytics backend, which processes and stores sensor data obtained from SmartMonitor, and (iv) learning applications utilizing these features. In an ongoing study, we applied our solution to a serious game to adaptively control its difficulty. Post-hoc interviews indicated that learners became aware of the adaptation and rated the adaptive version better and more exciting. Although potentials of utilizing physiological data for learning analytics are very promising, more interdisciplinary research is necessary to exploit these for real-world educational settings.
- Citation
- BibTeX
Fortenbacher, A., Ninaus, M., Yun, H., Helbig, R. & Moeller, K.,
(2019).
Sensor Based Adaptive Learning - Lessons Learned.
In:
Pinkwart, N. & Konert, J.
(Hrsg.),
DELFI 2019.
Bonn:
Gesellschaft für Informatik e.V..
(S. 193-198).
DOI: 10.18420/delfi2019_355
@inproceedings{mci/Fortenbacher2019,
author = {Fortenbacher, Albrecht AND Ninaus, Manuel AND Yun, Haeseon AND Helbig, René AND Moeller, Korbinian},
title = {Sensor Based Adaptive Learning - Lessons Learned},
booktitle = {DELFI 2019},
year = {2019},
editor = {Pinkwart, Niels AND Konert, Johannes} ,
pages = { 193-198 } ,
doi = { 10.18420/delfi2019_355 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Fortenbacher, Albrecht AND Ninaus, Manuel AND Yun, Haeseon AND Helbig, René AND Moeller, Korbinian},
title = {Sensor Based Adaptive Learning - Lessons Learned},
booktitle = {DELFI 2019},
year = {2019},
editor = {Pinkwart, Niels AND Konert, Johannes} ,
pages = { 193-198 } ,
doi = { 10.18420/delfi2019_355 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
DELFI2019_355_Sensor_Based_Adaptive_Learning_-_Lessons_Learned.pdf | 2.037Mb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/delfi2019_355
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-691-6
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2019
Language:
(en)

Content Type: Text/Conference Paper
Collections
Related items
Showing items related by title, author, creator and subject.
-
GroupAL: ein Algorithmus zur Formation und Qualitätsbewertung von Lerngruppen in E-Learning-Szenarien / GroupAL: an algorithm for group formation and quality evaluation of learning groups in e-learning scenarios
Konert, Johannes; Burlak, Dmitrij; Steinmetz, Ralf
70–81 -
Autonomous Learning of State Representations for Control: An Emerging Field Aims to Autonomously Learn State Representations for Reinforcement Learning Agents from Their Real-World Sensor Observations
Böhmer, Wendelin; Springenberg, Jost Tobias; Boedecker, Joschka; Riedmiller, Martin; Obermayer, Klaus
353-362 -
Servicing Environmental E-Learning (E2-Learning): using Geographic Information and Remote Sensing Web Services to support E2-Learning
Kotzinos, Dimitris; Konstantinou, Giorgos; Chrysoulakis, Nektarios