GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • DELFI - e-Learning Fachtagung Informatik
  • P297 - DELFI 2019 - Die 17. Fachtagung Bildungstechnologien
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • DELFI - e-Learning Fachtagung Informatik
  • P297 - DELFI 2019 - Die 17. Fachtagung Bildungstechnologien
  • View Item

Sensor Based Adaptive Learning - Lessons Learned

Author:
Fortenbacher, Albrecht [DBLP] ;
Ninaus, Manuel [DBLP] ;
Yun, Haeseon [DBLP] ;
Helbig, René [DBLP] ;
Moeller, Korbinian [DBLP]
Abstract
Recent advances in sensor technology allow for investigating emotional and cognitive states of learners. However, making use of sensor data is a complex endeavor, even more so when considering physiological data to support learning. In the BMBF-funded project Learning Analytics for sensor-based adaptive learning (LISA), we developed a comprehensive solution for adaptive learning using sensor data for acquiring skin conductance, heart rate, as well as environmental factors (e.g. CO2). In particular, we developed, (i) a sensor wristband acquiring physiological and environmental data, (ii) a tablet application (SmartMonitor) for monitoring and visualizing sensor data, (iii) a learning analytics backend, which processes and stores sensor data obtained from SmartMonitor, and (iv) learning applications utilizing these features. In an ongoing study, we applied our solution to a serious game to adaptively control its difficulty. Post-hoc interviews indicated that learners became aware of the adaptation and rated the adaptive version better and more exciting. Although potentials of utilizing physiological data for learning analytics are very promising, more interdisciplinary research is necessary to exploit these for real-world educational settings.
  • Citation
  • BibTeX
Fortenbacher, A., Ninaus, M., Yun, H., Helbig, R. & Moeller, K., (2019). Sensor Based Adaptive Learning - Lessons Learned. In: Pinkwart, N. & Konert, J. (Hrsg.), DELFI 2019. Bonn: Gesellschaft für Informatik e.V.. (S. 193-198). DOI: 10.18420/delfi2019_355
@inproceedings{mci/Fortenbacher2019,
author = {Fortenbacher, Albrecht AND Ninaus, Manuel AND Yun, Haeseon AND Helbig, René AND Moeller, Korbinian},
title = {Sensor Based Adaptive Learning - Lessons Learned},
booktitle = {DELFI 2019},
year = {2019},
editor = {Pinkwart, Niels AND Konert, Johannes} ,
pages = { 193-198 } ,
doi = { 10.18420/delfi2019_355 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
DELFI2019_355_Sensor_Based_Adaptive_Learning_-_Lessons_Learned.pdf2.037Mb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/delfi2019_355

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/delfi2019_355
ISBN: 978-3-88579-691-6
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2019
Language: en (en)
Content Type: Text/Conference Paper 

Keywords

  • sensor based learning
  • learning analytics
  • adaptive learning system
Collections
  • DELFI 2019 [60]
  • P297 - DELFI 2019 - Die 17. Fachtagung Bildungstechnologien [60]

Show full item record

Related items

Showing items related by title, author, creator and subject.

  • GroupAL: ein Algorithmus zur Formation und Qualitätsbewertung von Lerngruppen in E-Learning-Szenarien / GroupAL: an algorithm for group formation and quality evaluation of learning groups in e-learning scenarios 

    Konert, Johannes; Burlak, Dmitrij; Steinmetz, Ralf

    70–81
  • Autonomous Learning of State Representations for Control: An Emerging Field Aims to Autonomously Learn State Representations for Reinforcement Learning Agents from Their Real-World Sensor Observations 

    Böhmer, Wendelin; Springenberg, Jost Tobias; Boedecker, Joschka; Riedmiller, Martin; Obermayer, Klaus

    353-362
  • Servicing Environmental E-Learning (E2-Learning): using Geographic Information and Remote Sensing Web Services to support E2-Learning 

    Kotzinos, Dimitris; Konstantinou, Giorgos; Chrysoulakis, Nektarios


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.