Logo des Repositoriums
 
Konferenzbeitrag

EClaiRE: Context Matters! – Comparing Word Embeddings for Relation Classification

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

In recent years, there has been an increasing interest in the task of relation classification, which aims to label a relation between two semantic entities. In this work, we investigate how domain-specific information influences the performance of ClaiRE, an SVM-based system combining manually crafted features with word embeddings. To this end, we experiment with a wide range of word embeddings and evaluate on one general and two scientific relation classification datasets. We release all of our code for relation classification and data for scientific word embeddings to enable the reproduction of our experiments.

Beschreibung

Hettinger, Lena; Zehe, Albin; Dallmann, Alexander; Hotho, Andreas (2019): EClaiRE: Context Matters! – Comparing Word Embeddings for Relation Classification. INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft. DOI: 10.18420/inf2019_24. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-688-6. pp. 191-204. Data Science. Kassel. 23.-26. September 2019

Zitierform

Tags