Logo des Repositoriums
 
Konferenzbeitrag

On Advancement of Information Spaces to Improve Prediction-Based Compression

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

One of the scientific communities that generate the largest amounts of data today are the climate sciences. New climate models enable model integrations at unprecedented resolution, simulating timescales from decades to centuries of climate change. Nowadays, limited storage space and ever increasing model output is a big challenge. For this reason, we look at lossless compression using prediction-based data compression. We show that there is a significant dependence of the compression rate on the chosen traversal method and the underlying data model. We examine the influence of this structural dependency on prediction-based compression algorithms and explore possibilities to improve compression rates. We introduce the concept of Information Spaces (IS), which help to improve the accuracy of predictions by nearly 10% and decrease the standard deviation of the compression results by 20% on average.

Beschreibung

Cayoglu, Ugur; Tristram, Frank; Meyer, Jörg; Kerzenmacher, Tobias; Braesicke, Peter; Streit, Achim (2019): On Advancement of Information Spaces to Improve Prediction-Based Compression. INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft. DOI: 10.18420/inf2019_39. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-688-6. pp. 271-272. Data Science. Kassel. 23.-26. September 2019

Zitierform

Tags