Safe Active Learning for Time-Series Modeling with Gaussian Processes
Abstract
Learning time-series models is useful for many applications, such as simulation and forecasting. In this study, we consider the problem of actively learning time-series models while taking given safety constraints into account. For time-series modeling we employ a Gaussian process with a nonlinear exogenous input structure. The proposed approach generates data appropriate for time series model learning, i.e. input and output trajectories, by dynamically exploring the input space. The approach parametrizes the input trajectory as consecutive trajectory sections, which are determined stepwise given safety requirements and past observations. We analyze the proposed algorithm and evaluate it empirically on a technical application. The results show the effectiveness of our approach in a realistic technical use case.
- Citation
- BibTeX
Zimmer, C., Meister, M. & Nguyen-Tuong, D.,
(2019).
Safe Active Learning for Time-Series Modeling with Gaussian Processes.
In:
David, K., Geihs, K., Lange, M. & Stumme, G.
(Hrsg.),
INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft.
Bonn:
Gesellschaft für Informatik e.V..
(S. 281-281).
DOI: 10.18420/inf2019_44
@inproceedings{mci/Zimmer2019,
author = {Zimmer, Christoph AND Meister, Mona AND Nguyen-Tuong, Duy},
title = {Safe Active Learning for Time-Series Modeling with Gaussian Processes},
booktitle = {INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft},
year = {2019},
editor = {David, Klaus AND Geihs, Kurt AND Lange, Martin AND Stumme, Gerd} ,
pages = { 281-281 } ,
doi = { 10.18420/inf2019_44 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Zimmer, Christoph AND Meister, Mona AND Nguyen-Tuong, Duy},
title = {Safe Active Learning for Time-Series Modeling with Gaussian Processes},
booktitle = {INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft},
year = {2019},
editor = {David, Klaus AND Geihs, Kurt AND Lange, Martin AND Stumme, Gerd} ,
pages = { 281-281 } ,
doi = { 10.18420/inf2019_44 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
paper3_21.pdf | 35.11Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2019_44
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/inf2019_44
ISBN: 978-3-88579-688-6
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2019
Language:
(en)

Content Type: Text/Conference Paper