Logo des Repositoriums
 
Konferenzbeitrag

Fixed FAR vote fusion of regional facial classifiers

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2014

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Holistic face recognition methods like PCA and LDA have the disadvantage that they are very sensitive to expression, hair and illumination variations. This is one of the main reasons they are no longer competitive in the major benchmarks like FRGC and FRVT. In this paper we present an LDA based approach that combines many overlapping regional classifiers (experts) using what we call a Fixed FAR Voting Fusion (FFVF) strategy. The combination by voting of regional classifiers means that if there are sufficient regional classifiers unaffected by the expression, illumination or hair variations, the fused classifier will still correctly recognise the face. The FFVF approach has two interesting properties: it allows robust fusion of dependent classifiers and it only requires a single parameter to be tuned to obtain weights for fusion of different classifiers. We show the potential of the FFVF of regional classifiers using the standard benchmarks experiments 1 and 4 on FRGCv2 data. The multi-region FFVF classifier has a FRR of 4\% at FAR=0.1\% for controlled and 38\% for uncontrolled data compared to 7\% and 56\% for the best single region classifier.

Beschreibung

Spreeuwers, Luuk J.; Veldhuis, Raymond N. J.; Sultanali, Siar; Diephuis, Jasper (2014): Fixed FAR vote fusion of regional facial classifiers. BIOSIG 2014. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-624-4. pp. 187-194. Darmstadt. 10.-12. September 2014

Schlagwörter

Zitierform

DOI

Tags