GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • DeLFI
  • DeLFI 2019 Workshops
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • DeLFI
  • DeLFI 2019 Workshops
  • View Item

Mining Academic Data to Support Students’ Advisors: A Preliminary Study

Author:
Egbers, Lennart [DBLP] ;
Merceron, Agathe [DBLP] ;
Wagner, Stephan [DBLP]
Abstract
Many universities take measures to reduce the number of students dropping out. To support students’ advisors better becomes crucial. Besides their knowledge that they acquire through experience, which is a very important human factor in that process, advisors usually know very little about how students get along in their studies. In this paper, we present preliminary work to support advisors better when meeting students. The current investigation includes two main parts called “overview” and “typical completing behaviours”. The overview part contains visualizations giving general information about how students manage the degree as well as information contrasting students who complete the degree and students who drop out. Typical completing behaviours are obtained through clustering. In this work, data from 2276 students have been analysed.
  • Citation
  • BibTeX
Egbers, L., Merceron, A. & Wagner, S., (2019). Mining Academic Data to Support Students’ Advisors: A Preliminary Study. In: Schulz, S. (Hrsg.), Proceedings of DELFI Workshops 2019. Bonn: Gesellschaft für Informatik e.V.z. (S. 20). DOI: 10.18420/delfi2019-ws-102
@inproceedings{mci/Egbers2019,
author = {Egbers, Lennart AND Merceron, Agathe AND Wagner, Stephan},
title = {Mining Academic Data to Support Students’ Advisors: A Preliminary Study},
booktitle = {Proceedings of DELFI Workshops 2019},
year = {2019},
editor = {Schulz, Sandra} ,
pages = { 20 } ,
doi = { 10.18420/delfi2019-ws-102 },
publisher = {Gesellschaft für Informatik e.V.z},
address = {Bonn}
}
DateienGroesseFormatAnzeige
102.pdf422.0Kb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/delfi2019-ws-102

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/delfi2019-ws-102
xmlui.MetaDataDisplay.field.date: 2019
Language: en (en)
Content Type: Text/Conference Poster

Keywords

  • Students’ advisors
  • drop-out students
  • time to graduation
  • interactive dashboard
  • typical completing behaviours.
Collections
  • DeLFI 2019 Workshops [23]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.