Analysis of crash simulation data using spectral embedding with histogram distances
Author:
Abstract
Finite Element simulation of crash tests in the car industry generates huge amounts of high-dimensional numerical data. Methods from Machine Learning, especially from Dimensionality Reduction, can assist in analyzing and evaluating this data efficiently. Here we present a method that performs a two step dimensionality reduction in a novel manner: First the simulation data is represented as (normalized) histograms, then embedded into a low dimensional space using histogram distances and the nonlinear method of Spectral Embedding/Diffusion Maps, thus enabling a much easier data analysis. In particular, this method solves the problem of comparing simulation data with small changes in the Finite Element grids due to variations of geometry or unequally fine grid structures.
- Citation
- BibTeX
Schwartz, A.-L.,
(2014).
Analysis of crash simulation data using spectral embedding with histogram distances.
In:
Plödereder, E., Grunske, L., Schneider, E. & Ull, D.
(Hrsg.),
Informatik 2014.
Bonn:
Gesellschaft für Informatik e.V..
(S. 2449-2460).
@inproceedings{mci/Schwartz2014,
author = {Schwartz, Anna-Luisa},
title = {Analysis of crash simulation data using spectral embedding with histogram distances},
booktitle = {Informatik 2014},
year = {2014},
editor = {Plödereder, E. AND Grunske, L. AND Schneider, E. AND Ull, D.} ,
pages = { 2449-2460 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Schwartz, Anna-Luisa},
title = {Analysis of crash simulation data using spectral embedding with histogram distances},
booktitle = {Informatik 2014},
year = {2014},
editor = {Plödereder, E. AND Grunske, L. AND Schneider, E. AND Ull, D.} ,
pages = { 2449-2460 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-626-8
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2014
Language:
(en)

Content Type: Text/Conference Paper
Collections
- P232 - INFORMATIK 2014 [297]