GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Seminars
  • S14 - SKILL 2018 - Studierendenkonferenz Informatik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Seminars
  • S14 - SKILL 2018 - Studierendenkonferenz Informatik
  • View Item

Hyper-Parameter Search for Convolutional Neural Networks - An Evolutionary Approach

Author:
Bibaeva, Victoria [DBLP]
Abstract
Convolutional neural networks is one of the most popular neural network classes within the deep learning research area. Due to their specific architecture they are widely used to solve such challenging tasks as image and speech recognition, video analysis etc. The architecture itself is defined by a number of (hyper-)parameters that have major impact on the recognition rate. Although much significant progress has been made to improve the performance of convolutional networks, the typical hyper-parameter search is done manually, taking therefore a long time and likely to disregard some very good values. This paper solves the problem by proposing two different evolutionary algorithms for automated hyper-parameter search in convolutional architectures. It will be shown that in case of image recognition these algorithms are capable of finding architectures with nearly state of the art performance automatically, sparing the scientists from much tedious effort.
  • Citation
  • BibTeX
Bibaeva, V., (2018). Hyper-Parameter Search for Convolutional Neural Networks - An Evolutionary Approach. In: Becker, M. (Hrsg.), SKILL 2018 - Studierendenkonferenz Informatik. Bonn: Gesellschaft für Informatik e.V.. (S. 169-180).
@inproceedings{mci/Bibaeva2018,
author = {Bibaeva, Victoria},
title = {Hyper-Parameter Search for Convolutional Neural Networks - An Evolutionary Approach},
booktitle = {SKILL 2018 - Studierendenkonferenz Informatik},
year = {2018},
editor = {Becker, Michael} ,
pages = { 169-180 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
SKILL2018-14.pdf257.0Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-448-6
ISSN: 1614-3213
xmlui.MetaDataDisplay.field.date: 2018
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • deep learning
  • convolutional neural networks
  • CNN
  • hyper-parameter search
  • evolutionary algorithms
  • genetic algorithm
  • memetic algorithm
Collections
  • S14 - SKILL 2018 - Studierendenkonferenz Informatik [16]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.