GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • ARCS - Conference on Architecture of Computing Systems
  • P200 - ARCS 2012 Workshops
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • ARCS - Conference on Architecture of Computing Systems
  • P200 - ARCS 2012 Workshops
  • View Item

I/O-efficient approximation of graph diameters by parallel cluster growing – a first experimental study

Author:
Ajwani, Deepak [DBLP] ;
Beckmann, Andreas [DBLP] ;
Meyer, Ulrich [DBLP] ;
Veith, David [DBLP]
Abstract
A fundamental step in the analysis of a massive graph is to compute its diameter. In the RAM model, the diameter of a connected undirected unweighted graph can be efficiently 2-approximated using a Breadth-First Search (BFS) traversal from an arbitrary node. However, if the graph is stored on disk, even an external memory BFS traversal is prohibitive, owing to the large number of I/Os it incurs. Meyer [Mey08] proposed a parametrized algorithm to compute an approximation of graph diameter with fewer I/Os than that required for exact BFS traversal of the graph. The approach is based on growing clusters around randomly chosen vertices `in parallel' until their fringes meet. We present an implementation of this algorithm and compare it with some simple heuristics and external-memory BFS in order to determine the trade-off between the approximation ratio and running-time achievable in practice. Our experiments show that with carefully chosen parameters, the new approach is indeed capable to produce surprisingly good diameter approximations in shorter time. We also confirm experimentally, that there are graph-classes where the parametrized approach runs into bad approximation ratios just as the theoretical analysis in [Mey08] suggests.
  • Citation
  • BibTeX
Ajwani, D., Beckmann, A., Meyer, U. & Veith, D., (2012). I/O-efficient approximation of graph diameters by parallel cluster growing – a first experimental study. In: Mühl, G., Richling, J. & Herkersdorf, A. (Hrsg.), ARCS 2012 Workshops. Bonn: Gesellschaft für Informatik e.V.. (S. 493-504).
@inproceedings{mci/Ajwani2012,
author = {Ajwani, Deepak AND Beckmann, Andreas AND Meyer, Ulrich AND Veith, David},
title = {I/O-efficient approximation of graph diameters by parallel cluster growing – a first experimental study},
booktitle = {ARCS 2012 Workshops},
year = {2012},
editor = {Mühl, Gero AND Richling, Jan AND Herkersdorf, Andreas} ,
pages = { 493-504 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
493.pdf144.8Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-294-9
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2012
Language: en (en)
Content Type: Text/Conference Paper
Collections
  • P200 - ARCS 2012 Workshops [43]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.