GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • German Conference on Bioinformatics
  • P235 - GCB 2014 - German Conference on Bioinformatics 2014
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • German Conference on Bioinformatics
  • P235 - GCB 2014 - German Conference on Bioinformatics 2014
  • View Item

A general approach for discriminative de novo motif discovery from high-throughput data

Author:
Grau, Jan [DBLP] ;
Posch, Stefan [DBLP] ;
Grosse, Ivo [DBLP] ;
Keilwagen, Jens [DBLP]
Abstract
High-throughput techniques like ChIP-seq, ChIP-exo, and protein binding microarrays (PBMs) demand for novel de novo motif discovery approaches that focus on accuracy and runtime on large data sets. While specialized algorithms have been designed for discovering motifs in in-vivo ChIP-seq/ChIP-exo or in in-vitro PBM data, none of these works equally well for all these high-throughput techniques. Here, we present Dimont, a general approach for fast and accurate de-novo motif discovery from high-throughput data, which achieves a competitive performance on both ChIP-seq and PBM data compared to recent approaches specifically designed for either technique. Hence, Dimont allows for investigating differences between in-vitro and in-vivo binding in an unbiased manner using a unified approach. For most transcription factors, Dimont discovers similar motifs from in-vivo and in-vitro data, but we also find notable exceptions. Scrutinizing the benefit of modeling dependencies between binding site positions, we find that more complex motif models often increase prediction performance and, hence, are a worthwhile field of research. Original paper: doi: 10.1093/nar/gkt831
  • Citation
  • BibTeX
Grau, J., Posch, S., Grosse, I. & Keilwagen, J., (2014). A general approach for discriminative de novo motif discovery from high-throughput data. In: Giegerich, R., Hofestädt, R. & Nattkemper, T. W. (Hrsg.), German conference on bioinformatics 2014. Bonn: Gesellschaft für Informatik e.V.. (S. 41-43).
@inproceedings{mci/Grau2014,
author = {Grau, Jan AND Posch, Stefan AND Grosse, Ivo AND Keilwagen, Jens},
title = {A general approach for discriminative de novo motif discovery from high-throughput data},
booktitle = {German conference on bioinformatics 2014},
year = {2014},
editor = {Giegerich, Robert AND Hofestädt, Ralf AND Nattkemper, Tim W.} ,
pages = { 41-43 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
41.pdf44.46Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-629-9
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2014
Language: en (en)
Content Type: Text/Conference Paper
Collections
  • P235 - GCB 2014 - German Conference on Bioinformatics 2014 [13]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.