prospective.HARVEST – Optimizing Planning of Agricultural Harvest Logistic Chains
Abstract
The research and development project “prospective.HARVEST” aims at optimizing the process chain of silo maize harvesting, based on a predictive approach using prognosis data. New methods and tools have been developed utilizing remote and in-situ (geo-) data from a variety of data sources in order to enable farmers to optimize their logistic chains. Optimizations are computed as recommendations on several layers of the harvest process, from monitoring the crop over planning the inter-field and in-field coordination of harvesters and transport vehicles up to the surveillance and dynamic replanning of the ongoing harvest execution.
- Citation
- BibTeX
de Wall, A., Danowski-Buhren, C., Wytzisk-Arens, A., Lingemann, K. & Focke Martinez, S.,
(2020).
prospective.HARVEST – Optimizing Planning of Agricultural Harvest Logistic Chains.
In:
Gandorfer, M., Meyer-Aurich, A., Bernhardt, H., Maidl, F. X., Fröhlich, G. & Floto, H.
(Hrsg.),
40. GIL-Jahrestagung, Digitalisierung für Mensch, Umwelt und Tier.
Bonn:
Gesellschaft für Informatik e.V..
(S. 55-60).
DOI: Precision Farming, Smart Farming, Planning, Maize Harvesting, Logistic Chains
@inproceedings{mci/de Wall2020,
author = {de Wall, Arne AND Danowski-Buhren, Christian AND Wytzisk-Arens, Andreas AND Lingemann, Kai AND Focke Martinez, Santiago},
title = {prospective.HARVEST – Optimizing Planning of Agricultural Harvest Logistic Chains},
booktitle = {40. GIL-Jahrestagung, Digitalisierung für Mensch, Umwelt und Tier},
year = {2020},
editor = {Gandorfer, Markus AND Meyer-Aurich, Andreas AND Bernhardt, Heinz AND Maidl, Franz Xaver AND Fröhlich, Georg AND Floto, Helga} ,
pages = { 55-60 } ,
doi = { Precision Farming, Smart Farming, Planning, Maize Harvesting, Logistic Chains },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {de Wall, Arne AND Danowski-Buhren, Christian AND Wytzisk-Arens, Andreas AND Lingemann, Kai AND Focke Martinez, Santiago},
title = {prospective.HARVEST – Optimizing Planning of Agricultural Harvest Logistic Chains},
booktitle = {40. GIL-Jahrestagung, Digitalisierung für Mensch, Umwelt und Tier},
year = {2020},
editor = {Gandorfer, Markus AND Meyer-Aurich, Andreas AND Bernhardt, Heinz AND Maidl, Franz Xaver AND Fröhlich, Georg AND Floto, Helga} ,
pages = { 55-60 } ,
doi = { Precision Farming, Smart Farming, Planning, Maize Harvesting, Logistic Chains },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
GIL_2020_de-Wall_055-060.pdf | 526.2Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: Precision Farming, Smart Farming, Planning, Maize Harvesting, Logistic Chains
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-693-0
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2020
Language:
(en)

Content Type: Text/Conference Paper