GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • Mensch und Computer
  • Mensch und Computer 2017
  • Workshopband MuC 2017
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • Mensch und Computer
  • Mensch und Computer 2017
  • Workshopband MuC 2017
  • View Item

A Robust Drowsiness Detection Method based on Vehicle and Driver Vital Data

Author:
Kundinger, Thomas [DBLP] ;
Riener, Andreas [DBLP] ;
Sofra, Nikoletta [DBLP]
Abstract
Driver drowsiness is one of the main causes of fatal traffic accidents. Current driver assistance systems often use parameters related to driving behavior for detecting drowsiness. However, the ongoing automation of the driving task diminishes the availability of driving behavior parameters, therefore reducing the scope of such detection methods. The driver’s role as the sole operator changes; the driver must supplement, supervise or serve as a fallback part of a highly assisted/automated system. Reliably monitoring the driver’s state, especially the risk factor drowsiness, becomes more and more important for future automated driver systems. Numerous approaches, utilizing vehicle-based, behavioral and physiological based metrics, exist. This paper summarizes and discusses prevailing research questions related to drowsiness modeling and detection within the automotive context. Focus is placed on the utilization of driver vital data measured by wearable and other in-car sensors.
  • Citation
  • BibTeX
Kundinger, T., Riener, A. & Sofra, N., (2017). A Robust Drowsiness Detection Method based on Vehicle and Driver Vital Data. In: Burghardt, M., Wimmer, R., Wolff, C. & Womser-Hacker, C. (Hrsg.), Mensch und Computer 2017 - Workshopband. Regensburg: Gesellschaft für Informatik e.V.. DOI: 10.18420/muc2017-ws09-0307
@inproceedings{mci/Kundinger2017,
author = {Kundinger, Thomas AND Riener, Andreas AND Sofra, Nikoletta},
title = {A Robust Drowsiness Detection Method based on Vehicle and Driver Vital Data},
booktitle = {Mensch und Computer 2017 - Workshopband},
year = {2017},
editor = {Burghardt, Manuel AND Wimmer, Raphael AND Wolff, Christian AND Womser-Hacker, Christa} ,
doi = { 10.18420/muc2017-ws09-0307 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Regensburg}
}
DateienGroesseFormatAnzeige
2017_WS09_307.pdf300.4Kb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/muc2017-ws09-0307

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/muc2017-ws09-0307
xmlui.MetaDataDisplay.field.date: 2017
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Driver Drowsiness Detection
  • Driver Monitoring
  • Wearables
  • Automated Driving
  • Advanced Driver Assistance Systems
Collections
  • Workshopband MuC 2017 [93]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.