GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • EMISA
  • P304 - 40 Years EMISA 2019
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • EMISA
  • P304 - 40 Years EMISA 2019
  • View Item

Model-driven Runtime State Identification

Author:
Wolny, Sabine [DBLP] ;
Mazak, Alexandra [DBLP] ;
Wimmer, Manuel [DBLP] ;
Huemer, Christian [DBLP]
Abstract
With new advances such as Cyber-Physical Systems (CPS) and Internet of Things (IoT), more and more discrete software systems interact with continuous physical systems. State machines are a classical approach to specify the intended behavior of discrete systems during development. However, the actual realized behavior may deviate from those specified models due to environmental impacts, or measurement inaccuracies. Accordingly, data gathered at runtime should be validated against the specified model. A first step in this direction is to identify the individual system states of each execution of a system at runtime. This is a particular challenge for continuous systems where system states may be only identified by listening to sensor value streams. A further challenge is to raise these raw value streams on a model level for checking purposes. To tackle these challenges, we introduce a model-driven runtime state identification approach. In particular, we automatically derive corresponding time-series database queries from state machines in order to identify system runtime states based on the sensor value streams of running systems. We demonstrate our approach for a subset of SysML and evaluate it based on a case study of a simulated environment of a five-axes grip-arm robot within a working station.
  • Citation
  • BibTeX
Wolny, S., Mazak, A., Wimmer, M. & Huemer, C., (2020). Model-driven Runtime State Identification. In: Mayr, H. C., Rinderle-Ma, S. & Strecker, S. (Hrsg.), 40 Years EMISA 2019. Bonn: Gesellschaft für Informatik e.V.. (S. 29-44).
@inproceedings{mci/Wolny2020,
author = {Wolny, Sabine AND Mazak, Alexandra AND Wimmer, Manuel AND Huemer, Christian},
title = {Model-driven Runtime State Identification},
booktitle = {40 Years EMISA 2019},
year = {2020},
editor = {Mayr, Heinrich C. AND Rinderle-Ma, Stefanie AND Strecker, Stefan} ,
pages = { 29-44 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
EMISA_2019_03_Wolny.pdf816.1Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-698-5
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2020
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Model-driven Engineering
  • Time-Series Database
  • State Identification
  • Runtime Queries
  • Process Mining
Collections
  • P304 - 40 Years EMISA 2019 [25]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.