Logo des Repositoriums
 
Konferenzbeitrag

Multi-algorithm Benchmark for Fingerprint Presentation Attack Detection with Laser Speckle Contrast Imaging

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

The increased usage of biometric authentication systems has raised concerns regarding the security of components in a biometric system. As a consequence, preventing security issues related to presentation attacks targeting the biometric capture device are of utmost importance. To develop presentation attack detection (PAD) mechanisms, features confirming the liveness of the biometric characteristic such as the blood flow within the finger are needed. Utilising laser speckle contrast imaging (LSCI) to observe blood movement below the surface, we present an evaluation of different machine learning classifiers for fingerprint PAD. The experiments over a database comprising 35 different presentation attack instrument (PAI) species show that the detection performance varies depending on the utilised feature extraction method. A majority voting of selected classifiers and features achieves an APCER of 9% for a convenient BPCER of 0.05%.

Beschreibung

Kolberg, Jascha; Gomez-Barrero, Marta; Busch, Christoph (2019): Multi-algorithm Benchmark for Fingerprint Presentation Attack Detection with Laser Speckle Contrast Imaging. BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-690-9. pp. 119-128. Regular Research Papers. Darmstadt, Germany. 18.-20. September 2019

Zitierform

DOI

Tags