GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P296 - BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P296 - BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group
  • View Item

Gait verification using deep learning with a pairwise loss

Author:
Yalavarthi, Vijaya Krishna [DBLP] ;
Grabocka, Josif [DBLP] ;
Mandalapu, Hareesh [DBLP] ;
Schmidt-Thieme, Lars [DBLP]
Abstract
A unique walking pattern to every individual makes gait a promising biometric. Gait is becoming an increasingly important biometric because it can be captured non-intrusively through accelerometers positioned at various locations on the human body. The advent of wearable sensors technology helps in collecting the gait data seamlessly at a low cost. Thus gait biometrics using accelerometers play significant role in security-related applications like identity verification and recognition. In this work, we deal with the problem of identity verification using gait. As the data received through the sensors is indexed in time order, we consider identity verification through gait data as the time series binary classification problem. We present deep learning model with a pairwise loss function for the classification.We conducted experiments using two datasets: publicly available ZJU dataset of more than 150 subjects and our self collected dataset with 15 subjects. With our model, we obtained an Equal Error Rate of 0.05% over ZJU dataset and 0.5% over our dataset which shows that our model is superior to the state-of-the-art baselines.
  • Citation
  • BibTeX
Yalavarthi, V. K., Grabocka, J., Mandalapu, H. & Schmidt-Thieme, L., (2019). Gait verification using deep learning with a pairwise loss. In: Brömme, A., Busch, C., Dantcheva, A., Rathgeb, C. & Uhl, A. (Hrsg.), BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group. Bonn: Gesellschaft für Informatik e.V.. (S. 141-152).
@inproceedings{mci/Yalavarthi2019,
author = {Yalavarthi, Vijaya Krishna AND Grabocka, Josif AND Mandalapu, Hareesh AND Schmidt-Thieme, Lars},
title = {Gait verification using deep learning with a pairwise loss},
booktitle = {BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group},
year = {2019},
editor = {Brömme, Arslan AND Busch, Christoph AND Dantcheva, Antitza AND Rathgeb, Christian AND Uhl, Andreas} ,
pages = { 141-152 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
BIOSIG_2019_paper_22_update2.pdf1.131Mb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-690-9
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2019
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Gait verification
  • Time series classification
  • Binary classification
  • Pairwise loss function
Collections
  • P296 - BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group [23]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.