GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P296 - BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P296 - BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group
  • View Item

Impact of variations in synthetic training data on fingerprint classification

Author:
İrtem, Pelin [DBLP] ;
İrtem, Emre [DBLP] ;
Erdoğmuş, Nesli [DBLP]
Abstract
Creating and labeling data can be extremely time consuming and labor intensive. For this reason, lack of sufficiently large datasets for training deep structures is often noted as a major obstacle and instead, synthetic data generation is proposed. With their high acquisition and labeling complexity, this also applies to fingerprints. In the literature, a number of synthetic fingerprint generation systems have been proposed, but mostly for algorithm evaluation purposes. In this paper, we aim to analyze the use of synthetic fingerprint data with different levels of degradation for training deep neural networks. Fingerprint classification problem is selected as a case-study and the experiments are conducted on a public domain database, NIST SD4. A positive correlation between the synthetic data variation and the classification rate is observed while achieving state-of-the-art results.
  • Citation
  • BibTeX
İrtem, P., İrtem, E. & Erdoğmuş, N., (2019). Impact of variations in synthetic training data on fingerprint classification. In: Brömme, A., Busch, C., Dantcheva, A., Rathgeb, C. & Uhl, A. (Hrsg.), BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group. Bonn: Gesellschaft für Informatik e.V.. (S. 189-196).
@inproceedings{mci/İrtem2019,
author = {İrtem, Pelin AND İrtem, Emre AND Erdoğmuş, Nesli},
title = {Impact of variations in synthetic training data on fingerprint classification},
booktitle = {BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group},
year = {2019},
editor = {Brömme, Arslan AND Busch, Christoph AND Dantcheva, Antitza AND Rathgeb, Christian AND Uhl, Andreas} ,
pages = { 189-196 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
BIOSIG_2019_paper_20_update.pdf172.0Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-690-9
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2019
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Fingerprint classification
  • synthetic ground truth
  • deep learning
Collections
  • P296 - BIOSIG 2019 - Proceedings of the 18th International Conference of the Biometrics Special Interest Group [23]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.