Prosodic addressee-detection: ensuring privacy in always-on spoken dialog systems
Zusammenfassung
We analyze the addressee detection task for complexityidentical dialog for both human conversation and devicedirected speech. Our recurrent neural model performs at least as good as humans, who have problems with this task, even native speakers, who profit from the relevant linguistic skills. We perform ablation experiments on the features used by our model and show that fundamental frequency variation is the single most relevant feature class. Therefore, we conclude that future systems can detect whether they are addressed based only on speech prosody which does not (or only to a very limited extent) reveal the content of conversations not intended for the system.
- Vollständige Referenz
- BibTeX
Baumann, T. & Siegert, I.,
(2020).
Prosodic addressee-detection: ensuring privacy in always-on spoken dialog systems.
In:
Alt, F., Schneegass, S. & Hornecker, E.
(Hrsg.),
Mensch und Computer 2020 - Tagungsband.
New York:
ACM.
(S. 195–198).
DOI: 10.1145/3404983.3410021
@inproceedings{mci/Baumann2020,
author = {Baumann, Timo AND Siegert, Ingo},
title = {Prosodic addressee-detection: ensuring privacy in always-on spoken dialog systems},
booktitle = {Mensch und Computer 2020 - Tagungsband},
year = {2020},
editor = {Alt, Florian AND Schneegass, Stefan AND Hornecker, Eva} ,
pages = { 195–198 } ,
doi = { 10.1145/3404983.3410021 },
publisher = {ACM},
address = {New York}
}
author = {Baumann, Timo AND Siegert, Ingo},
title = {Prosodic addressee-detection: ensuring privacy in always-on spoken dialog systems},
booktitle = {Mensch und Computer 2020 - Tagungsband},
year = {2020},
editor = {Alt, Florian AND Schneegass, Stefan AND Hornecker, Eva} ,
pages = { 195–198 } ,
doi = { 10.1145/3404983.3410021 },
publisher = {ACM},
address = {New York}
}
Weitere Information zum Dokument oder der Volltext des Dokuments sind auf einem externen Server verfuegbar: https://dl.acm.org/doi/10.1145/3404983.3410021
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Feedback abschicken