GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • Software Engineering
  • P310 - Software Engineering 2021
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • Software Engineering
  • P310 - Software Engineering 2021
  • View Item

Determining Context Factors for Hybrid Development Methods with Trained Models

Author:
Klünder, Jil [DBLP] ;
Karajic, Dzejlana [DBLP] ;
Tell, Paolo [DBLP] ;
Karras, Oliver [DBLP] ;
Münkel, Christian [DBLP] ;
Münch, Jürgen [DBLP] ;
MacDonell, Stephen [DBLP] ;
Hebig, Regina [DBLP] ;
Kuhrmann, Marco [DBLP]
Abstract
Selecting a suitable development method for a specific project context is one of the most challenging activities in process design. To extend the so far statistical construction of hybrid development methods, we analyze 829 data points to investigate which context factors influence the choice of methods or practices. Using exploratory factor analysis, we derive five base clusters consisting of up to 10 methods. Logistic regression analysis then reveals which context factors have an influence on the integration of methods from these clusters in the development process. Our results indicate that only a few context factors including project/product size and target application domain significantly influence the choice. This summary refers to the paper “Determining Context Factors for Hybrid Development Methods with Trained Models”. This paper was published in the proceedings of the International Conference on Software and System Process in 2020.
  • Citation
  • BibTeX
Klünder, J., Karajic, D., Tell, P., Karras, O., Münkel, C., Münch, J., MacDonell, S., Hebig, R. & Kuhrmann, M., (2021). Determining Context Factors for Hybrid Development Methods with Trained Models. In: Koziolek, A., Schaefer, I. & Seidl, C. (Hrsg.), Software Engineering 2021. Bonn: Gesellschaft für Informatik e.V.. (S. 65-66). DOI: 10.18420/SE2021_21
@inproceedings{mci/Klünder2021,
author = {Klünder, Jil AND Karajic, Dzejlana AND Tell, Paolo AND Karras, Oliver AND Münkel, Christian AND Münch, Jürgen AND MacDonell, Stephen AND Hebig, Regina AND Kuhrmann, Marco},
title = {Determining Context Factors for Hybrid Development Methods with Trained Models},
booktitle = {Software Engineering 2021},
year = {2021},
editor = {Koziolek, Anne AND Schaefer, Ina AND Seidl, Christoph} ,
pages = { 65-66 } ,
doi = { 10.18420/SE2021_21 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
B1-20.pdf47.32Kb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/SE2021_21

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/SE2021_21
ISBN: 978-3-88579-704-3
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language: en (en)
Content Type: Text/ConferencePaper

Keywords

  • Software Process
  • Hybrid Development Method
  • Trained Models
Collections
  • P310 - Software Engineering 2021 [55]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.