Accurate Modeling of Performance Histories for Evolving Software Systems
Abstract
This work has been originally published in the proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE 2019). Learning from the history of a software system’s performance behavior does not only help discovering and locating performance bugs, but also supports identifying evolutionary performance patterns and general trends. Exhaustive regression testing is usually impractical, because rigorous performance benchmarking requires executing realistic workloads per revision, resulting in large execution times. We devise a novel active revision sampling approach that aims at tracking and understanding a system’s performance history by approximating the performance behavior of a software system across all of its revisions. In short, we iteratively sample and measure the performance of specific revisions to learn a performance-evolution model. We select revisions based on how uncertainty our models predicts their correspondent performance values. Technically, we use Gaussian Process models that not only estimates performance for each revision, but also provides an uncertainty value alongside. This way, we iteratively improve our model with only few measurements. Our evaluation with six real-world configurable software system demonstrates that Gaussian Process models are able to accurately estimate the performance-evolution histories with only few measurements and to reveal interesting behaviors and trends, such as change points.
- Citation
- BibTeX
Mühlbauer, S., Apel, S. & Siegmund, N.,
(2021).
Accurate Modeling of Performance Histories for Evolving Software Systems.
In:
Koziolek, A., Schaefer, I. & Seidl, C.
(Hrsg.),
Software Engineering 2021.
Bonn:
Gesellschaft für Informatik e.V..
(S. 79-80).
DOI: 10.18420/SE2021_28
@inproceedings{mci/Mühlbauer2021,
author = {Mühlbauer, Stefan AND Apel, Sven AND Siegmund, Norbert},
title = {Accurate Modeling of Performance Histories for Evolving Software Systems},
booktitle = {Software Engineering 2021},
year = {2021},
editor = {Koziolek, Anne AND Schaefer, Ina AND Seidl, Christoph} ,
pages = { 79-80 } ,
doi = { 10.18420/SE2021_28 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Mühlbauer, Stefan AND Apel, Sven AND Siegmund, Norbert},
title = {Accurate Modeling of Performance Histories for Evolving Software Systems},
booktitle = {Software Engineering 2021},
year = {2021},
editor = {Koziolek, Anne AND Schaefer, Ina AND Seidl, Christoph} ,
pages = { 79-80 } ,
doi = { 10.18420/SE2021_28 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/SE2021_28
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/SE2021_28
ISBN: 978-3-88579-704-3
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language:
(en)

Content Type: Text/ConferencePaper