Explainable AI and Multi-Modal Causability in Medicine
Author:
Abstract
Progress in statistical machine learning made AI in medicine successful, in certain classification tasks even beyond human level performance. Nevertheless, correlation is not causation and successful models are often complex “black-boxes”, which make it hard to understand <em>why</em> a result has been achieved. The explainable AI (xAI) community develops methods, e. g. to highlight which input parameters are relevant for a result; however, in the medical domain there is a need for causability: In the same way that usability encompasses measurements for the quality of use, causability encompasses measurements for the quality of explanations produced by xAI. The key for future human-AI interfaces is to map explainability with causability and to allow a domain expert to ask questions to understand why an AI came up with a result, and also to ask “what-if” questions (counterfactuals) to gain insight into the underlying <em>independent</em> explanatory factors of a result. A multi-modal causability is important in the medical domain because often different modalities contribute to a result.
- Citation
- BibTeX
Holzinger, A.,
(2021).
Explainable AI and Multi-Modal Causability in Medicine.
i-com: Vol. 19, No. 3.
Berlin:
De Gruyter.
(S. 171-179).
DOI: 10.1515/icom-2020-0024
@article{mci/Holzinger2021,
author = {Holzinger, Andreas},
title = {Explainable AI and Multi-Modal Causability in Medicine},
journal = {i-com},
volume = {19},
number = {3},
year = {2021},
,
pages = { 171-179 } ,
doi = { 10.1515/icom-2020-0024 }
}
author = {Holzinger, Andreas},
title = {Explainable AI and Multi-Modal Causability in Medicine},
journal = {i-com},
volume = {19},
number = {3},
year = {2021},
,
pages = { 171-179 } ,
doi = { 10.1515/icom-2020-0024 }
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1515/icom-2020-0024
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISSN: 2196-6826
xmlui.MetaDataDisplay.field.date: 2021
Language:
(en)

Content Type: Text/Journal Article