GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • i-com - Journal of Interactive Media
  • i-com Band 19 (2020) Heft 3
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • i-com - Journal of Interactive Media
  • i-com Band 19 (2020) Heft 3
  • View Item

Explainable AI and Multi-Modal Causability in Medicine

Author:
Holzinger, Andreas [DBLP]
Abstract
Progress in statistical machine learning made AI in medicine successful, in certain classification tasks even beyond human level performance. Nevertheless, correlation is not causation and successful models are often complex “black-boxes”, which make it hard to understand <em>why</em> a result has been achieved. The explainable AI (xAI) community develops methods, e. g. to highlight which input parameters are relevant for a result; however, in the medical domain there is a need for causability: In the same way that usability encompasses measurements for the quality of use, causability encompasses measurements for the quality of explanations produced by xAI. The key for future human-AI interfaces is to map explainability with causability and to allow a domain expert to ask questions to understand why an AI came up with a result, and also to ask “what-if” questions (counterfactuals) to gain insight into the underlying <em>independent</em> explanatory factors of a result. A multi-modal causability is important in the medical domain because often different modalities contribute to a result.
  • Citation
  • BibTeX
Holzinger, A., (2021). Explainable AI and Multi-Modal Causability in Medicine.   i-com: Vol. 19, No. 3. Berlin: De Gruyter. (S. 171-179). DOI: 10.1515/icom-2020-0024
@article{mci/Holzinger2021,
author = {Holzinger, Andreas},
title = {Explainable AI and Multi-Modal Causability in Medicine},
journal = {i-com},
volume = {19},
number = {3},
year = {2021},
,
pages = { 171-179 } ,
doi = { 10.1515/icom-2020-0024 }
}

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1515/icom-2020-0024

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.1515/icom-2020-0024
ISSN: 2196-6826
xmlui.MetaDataDisplay.field.date: 2021
Language: en (en)
Content Type: Text/Journal Article

Keywords

  • explainable AI
  • Human-Centered AI
  • Human-AI interfaces
Collections
  • i-com Band 19 (2020) Heft 3 [8]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.