GI LogoGI Logo
  • Anmelden
Digitale Bibliothek
    • Gesamter Bestand

      • Bereiche & Sammlungen
      • Titel
      • Autor
      • Erscheinungsdatum
      • Schlagwort
    • Diese Sammlung

      • Titel
      • Autor
      • Erscheinungsdatum
      • Schlagwort
Digital Bibliothek der Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • Deutsch 
    • English
    • Deutsch
Dokumentanzeige 
  •   Startseite
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • i-com - Journal of Interactive Media
  • i-com Band 19 (2020) Heft 3
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   Startseite
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • i-com - Journal of Interactive Media
  • i-com Band 19 (2020) Heft 3
  • Dokumentanzeige

How to Handle Health-Related Small Imbalanced Data in Machine Learning?

Autor(en):
Rauschenberger, Maria [DBLP] ;
Baeza-Yates, Ricardo [DBLP]
Zusammenfassung
When discussing interpretable machine learning results, researchers need to compare them and check for reliability, especially for health-related data. The reason is the negative impact of wrong results on a person, such as in wrong prediction of cancer, incorrect assessment of the COVID-19 pandemic situation, or missing early screening of dyslexia. Often only small data exists for these complex interdisciplinary research projects. Hence, it is essential that this type of research understands different methodologies and mindsets such as the <em>Design Science Methodology</em>, <em>Human-Centered Design</em> or <em>Data Science</em> approaches to ensure interpretable and reliable results. Therefore, we present various recommendations and design considerations for experiments that help to avoid over-fitting and biased interpretation of results when having small imbalanced data related to health. We also present two very different use cases: early screening of dyslexia and event prediction in multiple sclerosis.
  • Vollständige Referenz
  • BibTeX
Rauschenberger, M. & Baeza-Yates, R., (2021). How to Handle Health-Related Small Imbalanced Data in Machine Learning?.   i-com: Vol. 19, No. 3. Berlin: De Gruyter. (S. 215-226). DOI: 10.1515/icom-2020-0018
@article{mci/Rauschenberger2021,
author = {Rauschenberger, Maria AND Baeza-Yates, Ricardo},
title = {How to Handle Health-Related Small Imbalanced Data in Machine Learning?},
journal = {i-com},
volume = {19},
number = {3},
year = {2021},
,
pages = { 215-226 } ,
doi = { 10.1515/icom-2020-0018 }
}

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1515/icom-2020-0018

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Feedback abschicken

Mehr Information

DOI: 10.1515/icom-2020-0018
ISSN: 2196-6826
Datum: 2021
Sprache: en (en)
Typ: Text/Journal Article

Keywords

  • Machine Learning
  • Human-Centered Design
  • HCD
  • interactive systems
  • health
  • small data
  • imbalanced data
  • over-fitting
  • variances
  • interpretable results
  • guidelines
Sammlungen
  • i-com Band 19 (2020) Heft 3 [8]

Zur Langanzeige


Über uns | FAQ | Hilfe | Impressum | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


Über uns | FAQ | Hilfe | Impressum | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.