GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P307 - INFORMATIK 2020 - Back to the Future
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P307 - INFORMATIK 2020 - Back to the Future
  • View Item

Content-based Recommendations for Radio Stations with Deep Learned Audio Fingerprints

Author:
Langer, Stefan [DBLP] ;
Obermeier, Liza [DBLP] ;
Ebert, André [DBLP] ;
Friedrich, Markus [DBLP] ;
Munisamy, Emma [DBLP]
Abstract
The world of linear radio broadcasting is characterized by a wide variety of stations and played content. That is why finding stations playing the preferred content is a tough task for a potential listener, especially due to the overwhelming number of offered choices. Here, recommender systems usually step in but existing content-based approaches rely on metadata and thus are constrained by the available data quality. Other approaches leverage user behavior data and thus do not exploit any domain-specific knowledge and are furthermore disadvantageous regarding privacy concerns. Therefore, we propose a new pipeline for the generation of audio-based radio station fingerprints relying on audio stream crawling and a Deep Autoencoder. We show that the proposed fingerprints are especially useful for characterizing radio stations by their audio content and thus are an excellent representation for meaningful and reliable radio station recommendations. Furthermore, the proposed modules are part of the HRADIO Communication Platform, which enables hybrid radio features to radio stations. It is released with a flexible open source license and enables especially small-and medium-sized businesses, to provide customized and high quality radio services to potential listeners.
  • Citation
  • BibTeX
Langer, S., Obermeier, L., Ebert, A., Friedrich, M. & Munisamy, E., (2021). Content-based Recommendations for Radio Stations with Deep Learned Audio Fingerprints. In: Reussner, R. H., Koziolek, A. & Heinrich, R. (Hrsg.), INFORMATIK 2020. Gesellschaft für Informatik, Bonn. (S. 411-425). DOI: 10.18420/inf2020_38
@inproceedings{mci/Langer2021,
author = {Langer, Stefan AND Obermeier, Liza AND Ebert, André AND Friedrich, Markus AND Munisamy, Emma},
title = {Content-based Recommendations for Radio Stations with Deep Learned Audio Fingerprints},
booktitle = {INFORMATIK 2020},
year = {2021},
editor = {Reussner, Ralf H. AND Koziolek, Anne AND Heinrich, Robert} ,
pages = { 411-425 } ,
doi = { 10.18420/inf2020_38 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
DateienGroesseFormatAnzeige
C5-2.pdf491.2Kb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2020_38

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/inf2020_38
ISBN: 978-3-88579-701-2
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language: en (en)

Keywords

  • Hybrid Radio
  • Multimedia Services
  • Recommender Systems
  • Unsupervised Learning
  • Deep Audio Fingerprints
  • Deep Learning
Collections
  • P307 - INFORMATIK 2020 - Back to the Future [128]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.