Logo des Repositoriums
 
Textdokument

Machine learning for optimizing disposition and planning of vehicles with near real-time IoT events at scale

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Cargo vehicles today are equipped with power saving IoT devices measuring various aspects of the vehicle and cargo itself. The real-time stream of IoT events from the vehicles are sending large amounts of data each day, which needs to be correlated with each other and existing data sources to generate business value. The algorithmic challenges for discussion are the handling of noisy data and fast correlation of the sensor data as well as software engineering challenges to ensure the system(s) are highly performant and maintainable over the next decades.

Beschreibung

Daemi-Ahwazi, Anusch; Rost, Daniel (2021): Machine learning for optimizing disposition and planning of vehicles with near real-time IoT events at scale. INFORMATIK 2020. DOI: 10.18420/inf2020_67. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-701-2. pp. 765-767. Graph theory & ML with real-time IoT data. Karlsruhe. 28. September - 2. Oktober 2020

Zitierform

Tags