GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P307 - INFORMATIK 2020 - Back to the Future
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P307 - INFORMATIK 2020 - Back to the Future
  • View Item

Applying a deep learning-based approach for scaling vegetation dynamics to predict changing forest regimes under future climate and fire scenarios

Author:
Rammer, Werner [DBLP] ;
Seidl, Rupert [DBLP]
Abstract
The ability to anticipate future changes in terrestrial ecosystems is key for their management. New tools are required that bridge the gap between a high level of process understanding at fine spatial grain, and the increasing relevance for management at larger extents. Such a tool is SVD (Scaling Vegetation Dynamics), a scaling framework that specifically uses deep learning to learn the behavior of detailed vegetation models in response to different environmental factors. This trained deep neural network (DNN) is then applied within the framework on large spatial scales. In addition, SVD includes also explicitly modelled processes such as fire disturbances. Here we use the framework to simulate forest regime change in the 3 Mio. ha landscape of the Greater Yellowstone Ecosystem. We used four climate change scenarios and pre-defined fire events from statistical modelling, and analyzed whether prevailing forest types are able to regenerate after fire. Our results show that up to 60% of the area may undergo regime change until the end of the 21st century.
  • Citation
  • BibTeX
Rammer, W. & Seidl, R., (2021). Applying a deep learning-based approach for scaling vegetation dynamics to predict changing forest regimes under future climate and fire scenarios. In: Reussner, R. H., Koziolek, A. & Heinrich, R. (Hrsg.), INFORMATIK 2020. Gesellschaft für Informatik, Bonn. (S. 1019-1028). DOI: 10.18420/inf2020_96
@inproceedings{mci/Rammer2021,
author = {Rammer, Werner AND Seidl, Rupert},
title = {Applying a deep learning-based approach for scaling vegetation dynamics to predict changing forest regimes under future climate and fire scenarios},
booktitle = {INFORMATIK 2020},
year = {2021},
editor = {Reussner, Ralf H. AND Koziolek, Anne AND Heinrich, Robert} ,
pages = { 1019-1028 } ,
doi = { 10.18420/inf2020_96 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
DateienGroesseFormatAnzeige
C21-2.pdf2.706Mb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2020_96

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/inf2020_96
ISBN: 978-3-88579-701-2
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language: en (en)

Keywords

  • SVD
  • vegetation dynamics
  • deep learning
  • Greater Yellowstone Ecosystem
  • fire
  • climate change
Collections
  • P307 - INFORMATIK 2020 - Back to the Future [128]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.